{"title":"Eigenmode analysis of membrane stability in inviscid flow","authors":"C. Mavroyiakoumou, S. Alben","doi":"10.1103/PHYSREVFLUIDS.6.043901","DOIUrl":null,"url":null,"abstract":"We study the instability of a thin membrane (of zero bending rigidity) to out-of-plane deflections, when the membrane is immersed in an inviscid fluid flow and sheds a trailing vortex-sheet wake. We solve the nonlinear eigenvalue problem iteratively with large ensembles of initial guesses, for three canonical boundary conditions---both ends fixed, one end fixed and one free, and both free. Over several orders of magnitude of membrane mass density, we find instability by divergence or flutter (particularly at large mass density, or with one or both ends free). The most unstable eigenmodes generally become \"wavier\" at smaller mass density and smaller tension, but with regions of nonmonotonic behavior. We find good quantitative agreement with unsteady time-stepping simulations at small amplitude, but only qualitative similarities with the eventual steady-state large-amplitude motions.","PeriodicalId":328276,"journal":{"name":"arXiv: Fluid Dynamics","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Fluid Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVFLUIDS.6.043901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
We study the instability of a thin membrane (of zero bending rigidity) to out-of-plane deflections, when the membrane is immersed in an inviscid fluid flow and sheds a trailing vortex-sheet wake. We solve the nonlinear eigenvalue problem iteratively with large ensembles of initial guesses, for three canonical boundary conditions---both ends fixed, one end fixed and one free, and both free. Over several orders of magnitude of membrane mass density, we find instability by divergence or flutter (particularly at large mass density, or with one or both ends free). The most unstable eigenmodes generally become "wavier" at smaller mass density and smaller tension, but with regions of nonmonotonic behavior. We find good quantitative agreement with unsteady time-stepping simulations at small amplitude, but only qualitative similarities with the eventual steady-state large-amplitude motions.