How will Your Workload Look Like in 6 Years? Analyzing Wikimedia's Workload

A. Ali-Eldin, A. Rezaie, Amardeep Mehta, Stanislav Razroev, S. S. Luna, O. Seleznjev, Johan Tordsson, E. Elmroth
{"title":"How will Your Workload Look Like in 6 Years? Analyzing Wikimedia's Workload","authors":"A. Ali-Eldin, A. Rezaie, Amardeep Mehta, Stanislav Razroev, S. S. Luna, O. Seleznjev, Johan Tordsson, E. Elmroth","doi":"10.1109/IC2E.2014.50","DOIUrl":null,"url":null,"abstract":"Accurate understanding of workloads is key to efficient cloud resource management as well as to the design of large-scale applications. We analyze and model the workload of Wikipedia, one of the world's largest web sites. With descriptive statistics, time-series analysis, and polynomial splines, we study the trend and seasonality of the workload, its evolution over the years, and also investigate patterns in page popularity. Our results indicate that the workload is highly predictable with a strong seasonality. Our short term prediction algorithm is able to predict the workload with a Mean Absolute Percentage Error of around 2%.","PeriodicalId":273902,"journal":{"name":"2014 IEEE International Conference on Cloud Engineering","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Cloud Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC2E.2014.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

Abstract

Accurate understanding of workloads is key to efficient cloud resource management as well as to the design of large-scale applications. We analyze and model the workload of Wikipedia, one of the world's largest web sites. With descriptive statistics, time-series analysis, and polynomial splines, we study the trend and seasonality of the workload, its evolution over the years, and also investigate patterns in page popularity. Our results indicate that the workload is highly predictable with a strong seasonality. Our short term prediction algorithm is able to predict the workload with a Mean Absolute Percentage Error of around 2%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
6年后你的工作量会是怎样的?分析维基媒体的工作量
准确理解工作负载是高效云资源管理和大规模应用程序设计的关键。我们对世界上最大的网站之一维基百科的工作量进行分析和建模。通过描述性统计、时间序列分析和多项式样条,我们研究了工作负载的趋势和季节性,以及多年来的演变,还研究了页面流行度的模式。我们的研究结果表明,工作量是高度可预测的,具有很强的季节性。我们的短期预测算法能够以2%左右的平均绝对百分比误差预测工作负载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combining Declarative and Imperative Cloud Application Provisioning Based on TOSCA Splicing MPLS and OpenFlow Tunnels Based on SDN Paradigm CoMoT -- A Platform-as-a-Service for Elasticity in the Cloud A Verification Platform for SDN-Enabled Applications Extraction of Bridges from High Resolution Remote Sensing Image Based on Topology Modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1