Legal Document Summarization Using Nlp and Ml Techniques

Rahul C Kore, Prachi Ray, P. Lade, Amit K. Nerurkar
{"title":"Legal Document Summarization Using Nlp and Ml Techniques","authors":"Rahul C Kore, Prachi Ray, P. Lade, Amit K. Nerurkar","doi":"10.18535/ijecs/v9i05.4488","DOIUrl":null,"url":null,"abstract":"Reading legal documents are tedious and sometimes it requires domain knowledge related to that document. It is hard to read the full legal document without missing the key important sentences. With increasing number of legal documents it would be convenient to get the essential information from the document without having to go through the whole document. The purpose of this study is to understand a large legal document within a short duration of time. Summarization gives flexibility and convenience to the reader. Using vector representation of words, text ranking algorithms, similarity techniques, this study gives a way to produce the highest ranked sentences. Summarization produces the result in such a way that it covers the most vital information of the document in a concise manner. The paper proposes how the different natural language processing concepts can be used to produce the desired result and give readers the relief from going through the whole complex document. This study definitively presents the steps that are required to achieve the aim and elaborates all the algorithms used at each and every step in the process.","PeriodicalId":231371,"journal":{"name":"International Journal of Engineering and Computer Science","volume":"151 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18535/ijecs/v9i05.4488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Reading legal documents are tedious and sometimes it requires domain knowledge related to that document. It is hard to read the full legal document without missing the key important sentences. With increasing number of legal documents it would be convenient to get the essential information from the document without having to go through the whole document. The purpose of this study is to understand a large legal document within a short duration of time. Summarization gives flexibility and convenience to the reader. Using vector representation of words, text ranking algorithms, similarity techniques, this study gives a way to produce the highest ranked sentences. Summarization produces the result in such a way that it covers the most vital information of the document in a concise manner. The paper proposes how the different natural language processing concepts can be used to produce the desired result and give readers the relief from going through the whole complex document. This study definitively presents the steps that are required to achieve the aim and elaborates all the algorithms used at each and every step in the process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用Nlp和Ml技术的法律文件摘要
阅读法律文件是乏味的,有时它需要与该文件相关的领域知识。阅读完整的法律文件而不遗漏关键的重要句子是很难的。随着法律文件数量的增加,从文件中获取重要信息将很方便,而不必通读整份文件。本研究的目的是在短时间内理解一份大型法律文件。摘要给读者提供了灵活性和方便性。本研究利用词的向量表示、文本排序算法、相似度技术,给出了一种生成排名最高的句子的方法。摘要生成的结果以一种简明的方式涵盖了文档中最重要的信息。本文提出了如何使用不同的自然语言处理概念来产生期望的结果,并使读者从浏览整个复杂的文档中解脱出来。本研究明确提出了实现目标所需的步骤,并详细阐述了该过程中每一步使用的所有算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A FRAMEWORK FOR MANAGEMENT OF LEAKS AND EQUIPMENT FAILURE IN OIL WELLS Data-Driven Approach to Automated Lyric Generation Predictive Analytics for Demand Forecasting: A deep Learning-based Decision Support System A Model for Detection of Malwares on Edge Devices ENHANCE DOCUMENT VALIDATION UIPATH POWERED SIGNATURE VERIFICATION
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1