A comparative analysis of dissimilarity measures for clustering categorical data

J. C. Xavier, A. Canuto, N. D. Almeida, L. Gonçalves
{"title":"A comparative analysis of dissimilarity measures for clustering categorical data","authors":"J. C. Xavier, A. Canuto, N. D. Almeida, L. Gonçalves","doi":"10.1109/IJCNN.2013.6707039","DOIUrl":null,"url":null,"abstract":"Similarity and dissimilarity (distance) between objects is an important aspect that must be considered when clustering data. When clustering categorical data, for instance, these distance (similarity or dissimilarity) measures need to address properly the real particularities of categorical data. In this paper, we perform a comparative analysis with four different dissimilarity measures used as a distance metric for clustering categorical data. The first one is the Simple Matching Dissimilarity Measure (SMDM), which is one of the simplest and the most used metric for categorical attribute. The other two are context-based approaches (DIstance Learning in Categorical Attributes - DILCA and Domain Value Dissimilarity-DVD), and the last one is an extension of the SMDM, which is proposed in this paper. All four dissimilarities are applied as distance metrics in two well known clustering algorithms, k-means and agglomerative hierarchical clustering algorithms. In this analysis, we also use internal and external cluster validity measures, aiming to compare the effectiveness of all four distance measures in both clustering algorithms.","PeriodicalId":376975,"journal":{"name":"The 2013 International Joint Conference on Neural Networks (IJCNN)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2013 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2013.6707039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Similarity and dissimilarity (distance) between objects is an important aspect that must be considered when clustering data. When clustering categorical data, for instance, these distance (similarity or dissimilarity) measures need to address properly the real particularities of categorical data. In this paper, we perform a comparative analysis with four different dissimilarity measures used as a distance metric for clustering categorical data. The first one is the Simple Matching Dissimilarity Measure (SMDM), which is one of the simplest and the most used metric for categorical attribute. The other two are context-based approaches (DIstance Learning in Categorical Attributes - DILCA and Domain Value Dissimilarity-DVD), and the last one is an extension of the SMDM, which is proposed in this paper. All four dissimilarities are applied as distance metrics in two well known clustering algorithms, k-means and agglomerative hierarchical clustering algorithms. In this analysis, we also use internal and external cluster validity measures, aiming to compare the effectiveness of all four distance measures in both clustering algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚类分类数据的不同度量的比较分析
对象之间的相似性和不相似性(距离)是聚类数据时必须考虑的一个重要方面。例如,当对分类数据进行聚类时,这些距离(相似或不相似)度量需要适当地处理分类数据的实际特殊性。在本文中,我们使用四种不同的不相似性度量作为聚类分类数据的距离度量进行比较分析。第一种是简单匹配不相似性度量(Simple Matching Dissimilarity Measure, SMDM),它是分类属性最简单、最常用的度量之一。另外两种方法是基于上下文的远程学习方法(DILCA和dvd),最后一种方法是本文提出的SMDM的扩展。在两种著名的聚类算法——k-means和聚类分层聚类算法中,所有四种不相似性都被用作距离度量。在本分析中,我们还使用了内部和外部聚类有效性度量,旨在比较两种聚类算法中所有四种距离度量的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An SVM-based approach for stock market trend prediction Spiking neural networks for financial data prediction Improving multi-label classification performance by label constraints Biologically inspired intensity and range image feature extraction A location-independent direct link neuromorphic interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1