Real Time Drowsy Driver Detection Using Image Processing on Python

Muhammad Adib Faidhi Daud, A. P. Ismail, N. Tahir, K. Daud, Nazirah Mohamat Kasim, Fadzil Ahmad Mohamad
{"title":"Real Time Drowsy Driver Detection Using Image Processing on Python","authors":"Muhammad Adib Faidhi Daud, A. P. Ismail, N. Tahir, K. Daud, Nazirah Mohamat Kasim, Fadzil Ahmad Mohamad","doi":"10.1109/ICCSCE54767.2022.9935627","DOIUrl":null,"url":null,"abstract":"Drowsy driving is one of the most common causes of road accidents. Human usually become drowsy when tired and it is dangerous especially during driving on the road. Drowsiness can induce microsleep which can cause a significant decline in driving performance and thus would increase the chance of accidents. Hence, this real time drowsy driver detection is developed that to help minimize the chance of road accidents occurrence when the driver become drowsy. In this proposed method, the drowsy driver can be detected and alerted without using any intrusive instruments that could distract the driver. This drowsy detection is done using real time input image of the driver using a camera and image processing using Python. Next, drowsiness sign can be detected from the facial expression of the driver through the percentage of eyes opened and the frequent yawning. From the facial expression, the calculation of the eye closure known as eye aspect ratio (EAR) and the wideness of mouth opening known as mouth aspect ratio (MAR) can be made. Finally, using the value obtained, the system can determine whether the driver is alert or drowsy.","PeriodicalId":346014,"journal":{"name":"2022 IEEE 12th International Conference on Control System, Computing and Engineering (ICCSCE)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 12th International Conference on Control System, Computing and Engineering (ICCSCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSCE54767.2022.9935627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Drowsy driving is one of the most common causes of road accidents. Human usually become drowsy when tired and it is dangerous especially during driving on the road. Drowsiness can induce microsleep which can cause a significant decline in driving performance and thus would increase the chance of accidents. Hence, this real time drowsy driver detection is developed that to help minimize the chance of road accidents occurrence when the driver become drowsy. In this proposed method, the drowsy driver can be detected and alerted without using any intrusive instruments that could distract the driver. This drowsy detection is done using real time input image of the driver using a camera and image processing using Python. Next, drowsiness sign can be detected from the facial expression of the driver through the percentage of eyes opened and the frequent yawning. From the facial expression, the calculation of the eye closure known as eye aspect ratio (EAR) and the wideness of mouth opening known as mouth aspect ratio (MAR) can be made. Finally, using the value obtained, the system can determine whether the driver is alert or drowsy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在Python上使用图像处理的实时困倦驾驶员检测
疲劳驾驶是交通事故最常见的原因之一。人在疲劳的时候通常会昏昏欲睡,这是很危险的,尤其是在路上开车的时候。困倦会引起微睡眠,这会导致驾驶性能显著下降,从而增加事故发生的机会。因此,开发了这种实时昏昏欲睡的驾驶员检测,以帮助最大限度地减少驾驶员昏昏欲睡时发生道路事故的机会。在这种方法中,可以检测并提醒昏昏欲睡的驾驶员,而无需使用任何可能分散驾驶员注意力的侵入性仪器。这种昏昏欲睡的检测是通过使用摄像头实时输入驾驶员图像并使用Python进行图像处理来完成的。其次,睡意可以从司机的面部表情中检测出来,通过眼睛睁开的百分比和频繁的打哈欠。从面部表情中,可以计算出闭眼的眼睛宽高比(EAR)和张嘴的宽度(MAR)。最后,利用所获得的值,系统可以判断驾驶员是清醒还是昏昏欲睡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Enforcements of Wireless Based Matrix LED Message Moving Display by HD-W60 Microcontroller Multilayer Perceptron Optimization of ECG Peaks for Cardiac Abnormality Detection Domestic Trash Classification with Transfer Learning Using VGG16 Telemetry System for Highland Tomato Plants Using Ubidots Platform Systematic Literature Review of Security Control Assessment Challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1