{"title":"Cost-Sensitive Transformation for Chinese Address Recognition","authors":"Shujing Lu, Xiaohua Wei, Yue Lu","doi":"10.1109/ICPR.2014.499","DOIUrl":null,"url":null,"abstract":"This paper proposes a cost-sensitive transformation for improving handwritten address recognition performance by converting a general-purpose handwritten Chinese character recognition engine to a special-purpose one. The class probabilities produced by character recognition engine for predicting a sample to candidate classes are transformed to the expected costs based on Naive Bayes optimal theoretical predictions firstly. And then candidate probabilities are reestimated based on the expected costs. Two general-purpose offline handwritten Chinese character recognition engines, PAIS and HAW, are tested in our experiments by applying them in handwritten Chinese address recognition system. 1822 live handwritten Chinese address images are tested with multiple cost matrices. Experimental results show that cost-sensitive transformation improves the recognition performance of general purpose recognition engines on handwritten Chinese address recognition.","PeriodicalId":142159,"journal":{"name":"2014 22nd International Conference on Pattern Recognition","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2014.499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
This paper proposes a cost-sensitive transformation for improving handwritten address recognition performance by converting a general-purpose handwritten Chinese character recognition engine to a special-purpose one. The class probabilities produced by character recognition engine for predicting a sample to candidate classes are transformed to the expected costs based on Naive Bayes optimal theoretical predictions firstly. And then candidate probabilities are reestimated based on the expected costs. Two general-purpose offline handwritten Chinese character recognition engines, PAIS and HAW, are tested in our experiments by applying them in handwritten Chinese address recognition system. 1822 live handwritten Chinese address images are tested with multiple cost matrices. Experimental results show that cost-sensitive transformation improves the recognition performance of general purpose recognition engines on handwritten Chinese address recognition.