{"title":"Automatic identification of English, Chinese, Arabic, Devnagari and Bangla script line","authors":"U. Pal, B. Chaudhuri","doi":"10.1109/ICDAR.2001.953896","DOIUrl":null,"url":null,"abstract":"In a general situation, a document page may contain several scriptforms. For optical character recognition (OCR) of such a document page, it is necessary to separate the scripts before feeding them to their individual OCR systems. An automatic technique for the identification of printed Roman, Chinese, Arabic, Devnagari and Bangla text lines from a single document is proposed. Shape based features, statistical features and some features obtained from the concept of a water reservoir are used for script identification. The proposed scheme has an accuracy of about 97.33%.","PeriodicalId":277816,"journal":{"name":"Proceedings of Sixth International Conference on Document Analysis and Recognition","volume":"7 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"78","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Sixth International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2001.953896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 78
Abstract
In a general situation, a document page may contain several scriptforms. For optical character recognition (OCR) of such a document page, it is necessary to separate the scripts before feeding them to their individual OCR systems. An automatic technique for the identification of printed Roman, Chinese, Arabic, Devnagari and Bangla text lines from a single document is proposed. Shape based features, statistical features and some features obtained from the concept of a water reservoir are used for script identification. The proposed scheme has an accuracy of about 97.33%.