Design of Isometric and Isotonic Soft Hand for Rehabilitation Combining with Noninvasive Brain Machine Interface

Yue Li, Jinhua Zhang, Cheng Zhang, Yanqing Xiao, Jun Hong, M. Y. Wang, Yanyi Li
{"title":"Design of Isometric and Isotonic Soft Hand for Rehabilitation Combining with Noninvasive Brain Machine Interface","authors":"Yue Li, Jinhua Zhang, Cheng Zhang, Yanqing Xiao, Jun Hong, M. Y. Wang, Yanyi Li","doi":"10.1109/URAI.2018.8441816","DOIUrl":null,"url":null,"abstract":"Comparing with the traditional way for hand rehabilitation, such as simple trainers and artificial rigid auxiliary, this paper presents an isometric and isotonic soft hand for rehabilitation supported by the soft robots theory which aims to satisfy the more comprehensive rehabilitation requirements. Salient features of the device are the ability to achieve higher and controllable stiffness for both isometric and isotonic contraction. Then we analyze the active control for isometric and isotonic movement through electroencephalograph (EEG) signal. This paper focuses on three issues. The first is using silicon rubber to build a soft finger which can continuously stretch and bend to fit the basic action of the fingers. The second is changing stiffness of the finger through the coordination between variable stiffness cavity and actuating cavity. The last is to classify different EEG states based on isometric and isotonic contraction using common spatial pattern feature extraction (CSP) methods and support vector machine classification methods (SVM). On this basis, an EEG-based manipulator control system was set up.","PeriodicalId":347727,"journal":{"name":"2018 15th International Conference on Ubiquitous Robots (UR)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Conference on Ubiquitous Robots (UR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/URAI.2018.8441816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Comparing with the traditional way for hand rehabilitation, such as simple trainers and artificial rigid auxiliary, this paper presents an isometric and isotonic soft hand for rehabilitation supported by the soft robots theory which aims to satisfy the more comprehensive rehabilitation requirements. Salient features of the device are the ability to achieve higher and controllable stiffness for both isometric and isotonic contraction. Then we analyze the active control for isometric and isotonic movement through electroencephalograph (EEG) signal. This paper focuses on three issues. The first is using silicon rubber to build a soft finger which can continuously stretch and bend to fit the basic action of the fingers. The second is changing stiffness of the finger through the coordination between variable stiffness cavity and actuating cavity. The last is to classify different EEG states based on isometric and isotonic contraction using common spatial pattern feature extraction (CSP) methods and support vector machine classification methods (SVM). On this basis, an EEG-based manipulator control system was set up.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结合无创脑机接口的康复等距等张软手设计
与传统的手部康复方式,如简单的训练器和人工刚性辅助器相比,本文提出了一种基于软机器人理论的等距等张康复软手,旨在满足更全面的康复需求。该装置的显著特点是能够实现更高的和可控的刚度为等距和等张收缩。然后利用脑电图信号分析了等长等张运动的主动控制。本文主要研究三个问题。第一种是用硅橡胶制造一个柔软的手指,它可以不断地伸展和弯曲,以适应手指的基本动作。二是通过变刚度腔与作动腔的配合改变手指的刚度。最后利用公共空间模式特征提取(CSP)方法和支持向量机分类方法(SVM)对基于等长和等张收缩的不同脑电状态进行分类。在此基础上,建立了基于脑电图的机械手控制系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pneumatic Sleeve-Assisted Stable sEMG Measurement for Microneedle Array Electrode The creation of SanTO: a robot with “divine” features Design, Implementation, and Control of the Underwater Legged Robot AquaShoko for Low-Signature Underwater Exploration Shared Teleoperation for Nuclear Plant Robotics Using Interactive Virtual Guidance Generation and Shared Autonomy Approaches IPMC Embedded in a Pneumatic Soft Robotic Actuator: Preliminary Experiments in Actuation and SensingBehaviors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1