Automatic Unsupervised Polarity Detection on a Twitter Data Stream

D. Terrana, A. Augello, G. Pilato
{"title":"Automatic Unsupervised Polarity Detection on a Twitter Data Stream","authors":"D. Terrana, A. Augello, G. Pilato","doi":"10.1109/ICSC.2014.17","DOIUrl":null,"url":null,"abstract":"In this paper we propose a simple and completely automatic methodology for analyzing sentiment of users in Twitter. Firstly, we built a Twitter corpus by grouping tweets expressing positive and negative polarity through a completely automatic procedure by using only emoticons in tweets. Then, we have built a simple sentiment classifier where an actual stream of tweets from Twitter is processed and its content classified as positive, negative or neutral. The classification is made without the use of any pre-defined polarity lexicon. The lexicon is automatically inferred from the streaming of tweets. Experimental results show that our method reduces human intervention and, consequently, the cost of the whole classification process. We observe that our simple system captures polarity distinctions matching reasonably well the classification done by human judges.","PeriodicalId":175352,"journal":{"name":"2014 IEEE International Conference on Semantic Computing","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Semantic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSC.2014.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

In this paper we propose a simple and completely automatic methodology for analyzing sentiment of users in Twitter. Firstly, we built a Twitter corpus by grouping tweets expressing positive and negative polarity through a completely automatic procedure by using only emoticons in tweets. Then, we have built a simple sentiment classifier where an actual stream of tweets from Twitter is processed and its content classified as positive, negative or neutral. The classification is made without the use of any pre-defined polarity lexicon. The lexicon is automatically inferred from the streaming of tweets. Experimental results show that our method reduces human intervention and, consequently, the cost of the whole classification process. We observe that our simple system captures polarity distinctions matching reasonably well the classification done by human judges.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Twitter数据流上的自动无监督极性检测
在本文中,我们提出了一种简单而完全自动化的方法来分析Twitter用户的情绪。首先,我们通过一个完全自动的程序,将推文中表达积极极性和消极极性的推文进行分组,构建推文语料库。然后,我们建立了一个简单的情感分类器,其中处理来自Twitter的实际tweet流,并将其内容分类为积极,消极或中性。这种分类不使用任何预定义的极性词典。词汇会自动从tweet流中推断出来。实验结果表明,该方法减少了人为干预,从而降低了整个分类过程的成本。我们观察到,我们的简单系统捕获极性区分相当好地匹配由人类法官所做的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fulgeo -- Towards an Intuitive User Interface for a Semantics-Enabled Multimedia Search Engine Refinement of Ontology-Constrained Human Pose Classification "Units of Meaning" in Medical Documents: Natural Language Processing Perspective Enhancing Multimedia Semantic Concept Mining and Retrieval by Incorporating Negative Correlations Cloud Resource Auto-scaling System Based on Hidden Markov Model (HMM)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1