{"title":"Investigation of the LO Phase-Noise Effect and RF System Simulation for A 60-GHz Wireless Non-Contact Human Vital-Signal Detection System","authors":"P.-H. Lien, Fu-Lin Lin, H. Chuang","doi":"10.1109/ISWPC.2009.4800588","DOIUrl":null,"url":null,"abstract":"A detailed RF modeling and analysis for the effect of the phase noise of the local oscillator (LO) on a 60-GHz wireless non-contact human vital-signal detection system has been developed. To model the effect of the LO phase noise on the remote detecting estimation of the desired breathing and heartbeat signals around 1 Hz, the Lorentzian spectrum is applied for the RF system simulation of detection process. The simulation uses the root-MUSIC algorithm to calculate the frequency error ratios of the estimated heartbeat and breathing signals by the detection system. From the simulation results, it is found that root-MUSIC method is robust to analyze the effects of different phase noises on the non-contact vital-signal detection. The simulation result will be very useful for the RF design specifications of the wireless non-contact human vital-signal detection system.","PeriodicalId":383593,"journal":{"name":"2009 4th International Symposium on Wireless Pervasive Computing","volume":"151 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 4th International Symposium on Wireless Pervasive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWPC.2009.4800588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A detailed RF modeling and analysis for the effect of the phase noise of the local oscillator (LO) on a 60-GHz wireless non-contact human vital-signal detection system has been developed. To model the effect of the LO phase noise on the remote detecting estimation of the desired breathing and heartbeat signals around 1 Hz, the Lorentzian spectrum is applied for the RF system simulation of detection process. The simulation uses the root-MUSIC algorithm to calculate the frequency error ratios of the estimated heartbeat and breathing signals by the detection system. From the simulation results, it is found that root-MUSIC method is robust to analyze the effects of different phase noises on the non-contact vital-signal detection. The simulation result will be very useful for the RF design specifications of the wireless non-contact human vital-signal detection system.