Scale-Spectral-Spatial Attention Network for Hyperspectral Image Classification

Usama Derbashi, E. Aptoula
{"title":"Scale-Spectral-Spatial Attention Network for Hyperspectral Image Classification","authors":"Usama Derbashi, E. Aptoula","doi":"10.1109/SIU55565.2022.9864719","DOIUrl":null,"url":null,"abstract":"Attention networks enable neural networks to focus on the most beneficial parts of their input. In the context of remote sensing image classification, studies about spatial, spectral and spatial-spectral attention networks have already been reported. In this paper, a network integrating a scale-based attention module, in addition to spatial-spectral attention is proposed. The scale-space has been produced via alpha-trees, in order for the network to focus on the most useful scales. It is tested with two real hyperspectral datasets, where it achieves a performance improvement.","PeriodicalId":115446,"journal":{"name":"2022 30th Signal Processing and Communications Applications Conference (SIU)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU55565.2022.9864719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Attention networks enable neural networks to focus on the most beneficial parts of their input. In the context of remote sensing image classification, studies about spatial, spectral and spatial-spectral attention networks have already been reported. In this paper, a network integrating a scale-based attention module, in addition to spatial-spectral attention is proposed. The scale-space has been produced via alpha-trees, in order for the network to focus on the most useful scales. It is tested with two real hyperspectral datasets, where it achieves a performance improvement.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高光谱图像分类的尺度-光谱-空间注意网络
注意网络使神经网络能够专注于输入信息中最有益的部分。在遥感图像分类的背景下,空间关注网络、光谱关注网络和空间-光谱关注网络的研究已经有所报道。本文提出了一种结合尺度注意模块和空间光谱注意模块的网络。尺度空间是通过α -树生成的,目的是让网络集中在最有用的尺度上。在两个真实的高光谱数据集上进行了测试,取得了性能上的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Traffic Prediction with Peak-Aware Temporal Graph Convolutional Networks Artificial Neural Network Based Fault Diagnostic System for Wind Turbines Remaining Useful Life Prediction on C-MAPSS Dataset via Joint Autoencoder-Regression Architecture A New Fast Walsh Hadamard Transform Spread UW-Optical-OFDM Waveform Indoor Localization with Transfer Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1