Statistical Deep Parsing for Spanish: Abridged Version

Luis Chiruzzo
{"title":"Statistical Deep Parsing for Spanish: Abridged Version","authors":"Luis Chiruzzo","doi":"10.19153/cleiej.25.1.2","DOIUrl":null,"url":null,"abstract":"This document presents the development of a statistical HPSG parser for Spanish. HPSG is a deep linguistic formalism that combines syntactic and semantic information in the same representation, and is capable of elegantly modeling many linguistic phenomena. We describe the HPSG grammar adapted to Spanish we designed and the construction of our corpus. Then we present the different parsing algorithms we implemented for our corpus and grammar: a bottom-up strategy, a CKY with supertagger approach, and a LSTM top-down approach. We then show the experimental results obtained by our parsers compared among themselves and also to other external Spanish parsers for some global metrics and for some particular phenomena we wanted to test. The LSTM top-down approach was the strategy that obtained the best results on most of the metrics (for our parsers and external parsers as well), including constituency metrics (87.57 unlabeled F1, 82.06 labeled F1), dependency metrics (91.32 UAS, 88.96 LAS), and SRL (87.68 unlabeled, 80.66 labeled), and most of the particular phenomenon metrics such as clitics reduplication, relative referents detection and coordination chain identification.","PeriodicalId":418941,"journal":{"name":"CLEI Electron. J.","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CLEI Electron. J.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19153/cleiej.25.1.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This document presents the development of a statistical HPSG parser for Spanish. HPSG is a deep linguistic formalism that combines syntactic and semantic information in the same representation, and is capable of elegantly modeling many linguistic phenomena. We describe the HPSG grammar adapted to Spanish we designed and the construction of our corpus. Then we present the different parsing algorithms we implemented for our corpus and grammar: a bottom-up strategy, a CKY with supertagger approach, and a LSTM top-down approach. We then show the experimental results obtained by our parsers compared among themselves and also to other external Spanish parsers for some global metrics and for some particular phenomena we wanted to test. The LSTM top-down approach was the strategy that obtained the best results on most of the metrics (for our parsers and external parsers as well), including constituency metrics (87.57 unlabeled F1, 82.06 labeled F1), dependency metrics (91.32 UAS, 88.96 LAS), and SRL (87.68 unlabeled, 80.66 labeled), and most of the particular phenomenon metrics such as clitics reduplication, relative referents detection and coordination chain identification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
西班牙语统计深度解析:删节版
本文档介绍了西班牙语统计HPSG解析器的开发。HPSG是一种深层的语言形式主义,它将句法和语义信息结合在同一表示中,能够优雅地建模许多语言现象。我们描述了我们设计的适用于西班牙语的HPSG语法和语料库的结构。然后,我们介绍了为语料库和语法实现的不同解析算法:自底向上策略、带超级标记器的CKY方法和自顶向下的LSTM方法。然后,我们将展示解析器获得的实验结果,并将其与其他外部西班牙语解析器进行比较,以获得一些全局指标和我们想要测试的某些特定现象。LSTM自顶向下方法是在大多数指标(对于我们的解析器和外部解析器也是如此)上获得最佳结果的策略,包括选区指标(87.57未标记F1, 82.06标记F1)、依赖性指标(91.32 UAS, 88.96 LAS)和SRL(87.68未标记,80.66标记),以及大多数特定现象指标,如关键字重复、相对参考物检测和协调链识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cluster-based LSTM models to improve Dengue cases forecast Medium Access Control Techniques for Massive Machine-Type Communications in Cellular IoT Networks 2D Simplified Wildfire Spreading Model in Python: From NumPy to CuPy Preface to the CLTM-CLTD 2022 Special Issue On the specification and verification of the PCR parallel programming pattern in TLA+
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1