{"title":"Power-area efficient VLSI implementation of decision tree based spike classification for neural recording implants","authors":"Yuning Yang, Sam Boling, A. Mason","doi":"10.1109/BioCAS.2014.6981742","DOIUrl":null,"url":null,"abstract":"Spike classification is the last step in spike sorting to reduce the data rate of a brain-machine interface. This paper presents a new decision tree based spike classification method that achieves a classification accuracy comparable to methods based on L1 distance. The design was synthesized for 130nm CMOS with an architecture that interleaves eight channels to optimize the power-area tradeoff. Resource analysis shows that the resulting design consumes 32nW of power per channel at a clock rate of 50KHz and occupies 5115μm2 of area per channel.","PeriodicalId":414575,"journal":{"name":"2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BioCAS.2014.6981742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Spike classification is the last step in spike sorting to reduce the data rate of a brain-machine interface. This paper presents a new decision tree based spike classification method that achieves a classification accuracy comparable to methods based on L1 distance. The design was synthesized for 130nm CMOS with an architecture that interleaves eight channels to optimize the power-area tradeoff. Resource analysis shows that the resulting design consumes 32nW of power per channel at a clock rate of 50KHz and occupies 5115μm2 of area per channel.