Power-area efficient VLSI implementation of decision tree based spike classification for neural recording implants

Yuning Yang, Sam Boling, A. Mason
{"title":"Power-area efficient VLSI implementation of decision tree based spike classification for neural recording implants","authors":"Yuning Yang, Sam Boling, A. Mason","doi":"10.1109/BioCAS.2014.6981742","DOIUrl":null,"url":null,"abstract":"Spike classification is the last step in spike sorting to reduce the data rate of a brain-machine interface. This paper presents a new decision tree based spike classification method that achieves a classification accuracy comparable to methods based on L1 distance. The design was synthesized for 130nm CMOS with an architecture that interleaves eight channels to optimize the power-area tradeoff. Resource analysis shows that the resulting design consumes 32nW of power per channel at a clock rate of 50KHz and occupies 5115μm2 of area per channel.","PeriodicalId":414575,"journal":{"name":"2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BioCAS.2014.6981742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Spike classification is the last step in spike sorting to reduce the data rate of a brain-machine interface. This paper presents a new decision tree based spike classification method that achieves a classification accuracy comparable to methods based on L1 distance. The design was synthesized for 130nm CMOS with an architecture that interleaves eight channels to optimize the power-area tradeoff. Resource analysis shows that the resulting design consumes 32nW of power per channel at a clock rate of 50KHz and occupies 5115μm2 of area per channel.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于决策树的神经记录植入尖峰分类的高效VLSI实现
脉冲分类是降低脑机接口数据速率的最后一步。本文提出了一种新的基于决策树的脉冲分类方法,其分类精度与基于L1距离的方法相当。该设计是针对130nm CMOS合成的,其架构是交错八个通道,以优化功率面积权衡。资源分析表明,该设计在时钟频率为50KHz时,每通道功耗为32nW,每通道面积为5115μm2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Guidewire insertion planning for extracapsular hip fracture surgery A compact ECoG system with bidirectional capacitive data telemetry Omnidirectional wireless power combination harvest for wireless endoscopy Database-driven artifact detection method for EEG systems with few channels (DAD) ESL design of customizable real-time neuron networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1