ETH-PiP 2.0 Experience from Fenja EPCI

Antoine Marret, Torgeir Helland, Eddy Papore, Frederic Le-Naour, E. Pratt, R. Vivet, Fredrik Andreas Møller, Knut Edmund Haugen
{"title":"ETH-PiP 2.0 Experience from Fenja EPCI","authors":"Antoine Marret, Torgeir Helland, Eddy Papore, Frederic Le-Naour, E. Pratt, R. Vivet, Fredrik Andreas Møller, Knut Edmund Haugen","doi":"10.4043/32217-ms","DOIUrl":null,"url":null,"abstract":"\n This paper presents the foundations as well as the main outcomes of the development, industrialization, fabrication and installation of the TechnipFMC's Electrically Trace Heated Pipe-in-Pipe (ETH-PiP) 2.0 for application on the Fenja field development.\n The Fenja Field is located offshore mid-Norway at a water depth of approximately 324m, and consists of two separate hydrocarbon accumulations, the Pil and Bue reservoirs, with fluid properties leading to flow assurance challenges such as hydrates and wax formation. Following successful deployment of a first generation of Electrically Trace Heated Pipe-in-Pipe on the TotalEnergies (then Total) Islay Field in 2011, TechnipFMC have conducted the development and industrialization of a completely new generation of ETH-PiP 2.0.\n The new ETH-PiP 2.0 has higher electrical rating of 3.8/6.6kV to overcome the specificities of the Fenja field development including the long tie-back distance of 36.8km which makes Fenja the longest (and largest) ETH-PiP in the world.\n Subsequent to successful qualification of the ETH-PiP system, TechnipFMC has completed the manufacturing of 36.8km of ETH-PiP stalks at the Evanton spoolbase. These were then loaded out onto the Deep Energy pipelay vessel for subsea installation by reel lay.\n The installation was finalized in summer 2021 with the complete system being connected and tested from the Njord A platform after it returned from refurbishment in spring 2022.\n This paper presents the qualification, industrialization, assembly and installation of the new generation ETH-PiP 2.0 which forms part of the Fenja field development.","PeriodicalId":196855,"journal":{"name":"Day 2 Tue, May 02, 2023","volume":"245 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, May 02, 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/32217-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the foundations as well as the main outcomes of the development, industrialization, fabrication and installation of the TechnipFMC's Electrically Trace Heated Pipe-in-Pipe (ETH-PiP) 2.0 for application on the Fenja field development. The Fenja Field is located offshore mid-Norway at a water depth of approximately 324m, and consists of two separate hydrocarbon accumulations, the Pil and Bue reservoirs, with fluid properties leading to flow assurance challenges such as hydrates and wax formation. Following successful deployment of a first generation of Electrically Trace Heated Pipe-in-Pipe on the TotalEnergies (then Total) Islay Field in 2011, TechnipFMC have conducted the development and industrialization of a completely new generation of ETH-PiP 2.0. The new ETH-PiP 2.0 has higher electrical rating of 3.8/6.6kV to overcome the specificities of the Fenja field development including the long tie-back distance of 36.8km which makes Fenja the longest (and largest) ETH-PiP in the world. Subsequent to successful qualification of the ETH-PiP system, TechnipFMC has completed the manufacturing of 36.8km of ETH-PiP stalks at the Evanton spoolbase. These were then loaded out onto the Deep Energy pipelay vessel for subsea installation by reel lay. The installation was finalized in summer 2021 with the complete system being connected and tested from the Njord A platform after it returned from refurbishment in spring 2022. This paper presents the qualification, industrialization, assembly and installation of the new generation ETH-PiP 2.0 which forms part of the Fenja field development.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fenja EPCI的ETH-PiP 2.0经验
本文介绍了TechnipFMC的电伴热管中管(ETH-PiP) 2.0的开发、产业化、制造和安装在汾加油田开发中的应用基础和主要成果。Fenja油田位于挪威中部海上,水深约324米,由两个独立的油气聚集组成,Pil和blue储层,其流体性质导致了水合物和蜡层等流动保障挑战。继2011年在Total energy(当时的Total) Islay油田成功部署第一代电踪加热管中管之后,TechnipFMC又进行了新一代ETH-PiP 2.0的开发和产业化。新的ETH-PiP 2.0具有更高的额定电压3.8/6.6kV,以克服Fenja油田开发的特殊性,包括36.8公里的长回接距离,使Fenja成为世界上最长(也是最大)的ETH-PiP。在ETH-PiP系统成功认证之后,TechnipFMC已经在Evanton线轴基地完成了36.8公里ETH-PiP杆的制造。然后通过卷筒敷设将其装载到Deep Energy管道船上进行海底安装。安装于2021年夏季完成,整个系统在2022年春季翻新后从Njord A平台连接和测试。本文介绍了新一代ETH-PiP 2.0的资质、工业化、组装和安装,这是Fenja油田开发的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Estimation of Shear Wave Velocity Using Empirical, MLR, and GEP Techniques-Case Study: Kharg Island Offshore Oilfield Digital Twin of a Generic Jack-Up Platform Best Practices for Handling Completion Tubulars to Ensure Design Life Well Integrity in HPHT Wells Labrador Gas – History and Opportunity Junction Plate for High Pressure High Temperature System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1