Improving Security in Edge Computing by using Cognitive Trust Management Model

D. Ganesh, K. Suresh, M. S. Kumar, K. Balaji, Sreedhar Burada
{"title":"Improving Security in Edge Computing by using Cognitive Trust Management Model","authors":"D. Ganesh, K. Suresh, M. S. Kumar, K. Balaji, Sreedhar Burada","doi":"10.1109/ICECAA55415.2022.9936568","DOIUrl":null,"url":null,"abstract":"As a result of this new computer design, edge computing can process data rapidly and effectively near to the source, avoiding network resource and latency constraints. By shifting computing power to the network edge, edge computing decreases the load on cloud services centers while also reducing the time required for users to input data. Edge computing advantages for data-intensive services, in particular, could be obscured if access latency becomes a bottleneck. Edge computing raises a number of challenges, such as security concerns, data incompleteness, and a hefty up-front and ongoing expense. There is now a shift in the worldwide mobile communications sector toward 5G technology. This unprecedented attention to edge computing has come about because 5G is one of the primary entry technologies for large-scale deployment. Edge computing privacy has been a major concern since the technology’s inception, limiting its adoption and advancement. As the capabilities of edge computing have evolved, so have the security issues that have arisen as a result of these developments, as well as the increasing public demand for privacy protection. The lack of trust amongst IoT devices is exacerbated by the inherent security concerns and assaults that plague IoT edge devices. A cognitive trust management system is proposed to reduce this malicious activity by maintaining the confidence of an appliance & managing the service level belief & Quality of Service (QoS). Improved packet delivery ratio and jitter in cognitive trust management systems based on QoS parameters show promise for spotting potentially harmful edge nodes in computing networks at the edge.","PeriodicalId":273850,"journal":{"name":"2022 International Conference on Edge Computing and Applications (ICECAA)","volume":"270 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Edge Computing and Applications (ICECAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECAA55415.2022.9936568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

As a result of this new computer design, edge computing can process data rapidly and effectively near to the source, avoiding network resource and latency constraints. By shifting computing power to the network edge, edge computing decreases the load on cloud services centers while also reducing the time required for users to input data. Edge computing advantages for data-intensive services, in particular, could be obscured if access latency becomes a bottleneck. Edge computing raises a number of challenges, such as security concerns, data incompleteness, and a hefty up-front and ongoing expense. There is now a shift in the worldwide mobile communications sector toward 5G technology. This unprecedented attention to edge computing has come about because 5G is one of the primary entry technologies for large-scale deployment. Edge computing privacy has been a major concern since the technology’s inception, limiting its adoption and advancement. As the capabilities of edge computing have evolved, so have the security issues that have arisen as a result of these developments, as well as the increasing public demand for privacy protection. The lack of trust amongst IoT devices is exacerbated by the inherent security concerns and assaults that plague IoT edge devices. A cognitive trust management system is proposed to reduce this malicious activity by maintaining the confidence of an appliance & managing the service level belief & Quality of Service (QoS). Improved packet delivery ratio and jitter in cognitive trust management systems based on QoS parameters show promise for spotting potentially harmful edge nodes in computing networks at the edge.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用认知信任管理模型提高边缘计算的安全性
由于这种新的计算机设计,边缘计算可以在靠近源的地方快速有效地处理数据,避免了网络资源和延迟的限制。通过将计算能力转移到网络边缘,边缘计算减少了云服务中心的负载,同时也减少了用户输入数据所需的时间。如果访问延迟成为瓶颈,边缘计算对数据密集型服务的优势可能会被掩盖。边缘计算带来了许多挑战,例如安全问题、数据不完整以及大量的前期和持续费用。现在,全球移动通信领域正在向5G技术转变。这种对边缘计算前所未有的关注之所以出现,是因为5G是大规模部署的主要入口技术之一。自该技术问世以来,边缘计算隐私一直是一个主要问题,限制了它的采用和发展。随着边缘计算功能的发展,这些发展所产生的安全问题以及公众对隐私保护的需求也在不断增加。困扰物联网边缘设备的固有安全问题和攻击加剧了物联网设备之间缺乏信任。提出了一种认知信任管理系统,通过维护设备的信任、管理服务水平信念和服务质量(QoS)来减少这种恶意活动。在基于QoS参数的认知信任管理系统中,改进的数据包传送率和抖动显示了在边缘计算网络中发现潜在有害边缘节点的希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identification of IT Tickets and Bugs using Text-Supervised Pedagogical Approaches Application of Computer CAD Software Optimization in the Manufacture of Mechanical Reducer Considering Artificial Intelligence Auxiliary Decision-Making System for College Curriculum Construction based on Big Data Technology Pest Identification and Control using Deep Learning and Augmented Reality Internet of Things-based Personal Private Server Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1