Assessing the value of containers for NFVs: A detailed network performance study

Jakob Struye, Bart Spinnewyn, K. Spaey, Kristiaan Bonjean, Steven Latré
{"title":"Assessing the value of containers for NFVs: A detailed network performance study","authors":"Jakob Struye, Bart Spinnewyn, K. Spaey, Kristiaan Bonjean, Steven Latré","doi":"10.23919/CNSM.2017.8256024","DOIUrl":null,"url":null,"abstract":"Since its introduction in 2012, telecommunications operators have been applying the Network Function Virtualization principle to their core infrastructure, leading to more agile and cost-efficient deployments. While these Virtualized Network Functions (VNFs) are traditionally implemented using Virtual Machines (VMs), efforts are starting to shift to containerized VNF implementations, further improving agility and cost-efficiency. Furthermore, telecom applications often require extreme networking performance in terms of throughput and latency. While research has shown that containers outperform VMs on this front, it is currently unclear how the choice of container provider influences network performance. In this paper we compare the networking performance of Linux container implementations Docker, rkt and LXC. Throughput and latency are evaluated for single-host host, bridge (or NAT) and macvlan network configurations. This is, to the best of our knowledge, the first comparison featuring all three major Linux container implementations. We show that LXC performs best, with Docker and rkt showing throughputs of respectively up to 35 % and 58 % lower. Of the considered networking implementations, the macvlan network performs best. While it experiences a significant performance degradation when many containers are chained together, a single container using macvlan can outperform even a bare metal implementation when enough CPU resources are available.","PeriodicalId":211611,"journal":{"name":"2017 13th International Conference on Network and Service Management (CNSM)","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th International Conference on Network and Service Management (CNSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CNSM.2017.8256024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Since its introduction in 2012, telecommunications operators have been applying the Network Function Virtualization principle to their core infrastructure, leading to more agile and cost-efficient deployments. While these Virtualized Network Functions (VNFs) are traditionally implemented using Virtual Machines (VMs), efforts are starting to shift to containerized VNF implementations, further improving agility and cost-efficiency. Furthermore, telecom applications often require extreme networking performance in terms of throughput and latency. While research has shown that containers outperform VMs on this front, it is currently unclear how the choice of container provider influences network performance. In this paper we compare the networking performance of Linux container implementations Docker, rkt and LXC. Throughput and latency are evaluated for single-host host, bridge (or NAT) and macvlan network configurations. This is, to the best of our knowledge, the first comparison featuring all three major Linux container implementations. We show that LXC performs best, with Docker and rkt showing throughputs of respectively up to 35 % and 58 % lower. Of the considered networking implementations, the macvlan network performs best. While it experiences a significant performance degradation when many containers are chained together, a single container using macvlan can outperform even a bare metal implementation when enough CPU resources are available.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估nfv容器的价值:详细的网络性能研究
自2012年推出以来,电信运营商一直在将网络功能虚拟化原则应用于其核心基础设施,从而实现更灵活、更经济的部署。虽然这些虚拟网络功能(VNF)传统上是使用虚拟机(vm)实现的,但人们开始转向容器化的VNF实现,从而进一步提高灵活性和成本效率。此外,电信应用程序在吞吐量和延迟方面通常需要极高的网络性能。虽然研究表明容器在这方面优于虚拟机,但目前还不清楚容器提供商的选择如何影响网络性能。本文比较了Docker、rkt和LXC三种Linux容器实现的网络性能。吞吐量和延迟评估单主机主机,桥接(或NAT)和macvlan网络配置。据我们所知,这是第一次对所有三种主要Linux容器实现进行比较。我们发现LXC的性能最好,Docker和rkt的吞吐量分别降低了35%和58%。在考虑的网络实现中,macvlan网络性能最好。虽然当许多容器链接在一起时,它的性能会显著下降,但是当有足够的CPU资源可用时,使用macvlan的单个容器甚至可以优于裸机实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Measuring exposure in DDoS protection services Connectivity extraction in cloud infrastructures An evolutionary controllers' placement algorithm for reliable SDN networks A lightweight snapshot-based DDoS detector Enforcing free roaming among EU countries: An economic analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1