Embedding error correction into crossbars for reliable matrix vector multiplication using emerging devices

Qiuwen Lou, Tianqi Gao, P. Faley, M. Niemier, X. Hu, S. Joshi
{"title":"Embedding error correction into crossbars for reliable matrix vector multiplication using emerging devices","authors":"Qiuwen Lou, Tianqi Gao, P. Faley, M. Niemier, X. Hu, S. Joshi","doi":"10.1145/3370748.3406583","DOIUrl":null,"url":null,"abstract":"Emerging memory devices are an attractive choice for implementing very energy-efficient in-situ matrix-vector multiplication (MVM) for use in intelligent edge platforms. Despite their great potential, device-level non-idealities have a large impact on the application-level accuracy of deep neural network (DNN) inference. We introduce a low-density parity-check code (LDPC) based approach to correct non-ideality induced errors encountered during in-situ MVM. We first encode the weights using error correcting codes (ECC), perform MVM on the encoded weights, and then decode the result after in-situ MVM. We show that partial encoding of weights can maintain DNN inference accuracy while minimizing the overhead of LDPC decoding. Within two iterations, our ECC method recovers 60% of the accuracy in MVM computations when 5% of underlying computations are error-prone. Compared to an alternative ECC method which uses arithmetic codes, using LDPC improves AlexNet classification accuracy by 0.8% at iso-energy. Similarly, at iso-energy, we demonstrate an improvement in CIFAR-10 classification accuracy of 54% with VGG-11 when compared to a strategy that uses 2× redundancy in weights. Further design space explorations demonstrate that we can leverage the resilience endowed by ECC to improve energy efficiency (by reducing operating voltage). A 3.3× energy efficiency improvement in DNN inference on CIFAR-10 dataset with VGG-11 is achieved at iso-accuracy.","PeriodicalId":116486,"journal":{"name":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3370748.3406583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Emerging memory devices are an attractive choice for implementing very energy-efficient in-situ matrix-vector multiplication (MVM) for use in intelligent edge platforms. Despite their great potential, device-level non-idealities have a large impact on the application-level accuracy of deep neural network (DNN) inference. We introduce a low-density parity-check code (LDPC) based approach to correct non-ideality induced errors encountered during in-situ MVM. We first encode the weights using error correcting codes (ECC), perform MVM on the encoded weights, and then decode the result after in-situ MVM. We show that partial encoding of weights can maintain DNN inference accuracy while minimizing the overhead of LDPC decoding. Within two iterations, our ECC method recovers 60% of the accuracy in MVM computations when 5% of underlying computations are error-prone. Compared to an alternative ECC method which uses arithmetic codes, using LDPC improves AlexNet classification accuracy by 0.8% at iso-energy. Similarly, at iso-energy, we demonstrate an improvement in CIFAR-10 classification accuracy of 54% with VGG-11 when compared to a strategy that uses 2× redundancy in weights. Further design space explorations demonstrate that we can leverage the resilience endowed by ECC to improve energy efficiency (by reducing operating voltage). A 3.3× energy efficiency improvement in DNN inference on CIFAR-10 dataset with VGG-11 is achieved at iso-accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
嵌入误差校正到横梁可靠的矩阵矢量乘法使用新兴设备
新兴存储设备是实现非常节能的原位矩阵向量乘法(MVM)的一个有吸引力的选择,用于智能边缘平台。尽管具有巨大的潜力,但设备级非理想性对深度神经网络(DNN)推理的应用级精度有很大的影响。我们引入了一种基于低密度奇偶校验码(LDPC)的方法来纠正原位MVM中遇到的非理想性引起的错误。我们首先使用纠错码(error correcting codes, ECC)对权值进行编码,对编码后的权值进行MVM,然后对结果进行原位MVM解码。我们证明了权重的部分编码可以在保持DNN推理精度的同时最小化LDPC解码的开销。在两次迭代中,当5%的底层计算容易出错时,我们的ECC方法在MVM计算中恢复了60%的精度。与使用算术编码的替代ECC方法相比,LDPC在等能量下将AlexNet分类准确率提高了0.8%。类似地,在等能量下,我们证明与使用2倍冗余权值的策略相比,使用VGG-11的CIFAR-10分类准确率提高了54%。进一步的设计空间探索表明,我们可以利用ECC赋予的弹性来提高能源效率(通过降低工作电压)。在等精度下,VGG-11在CIFAR-10数据集上的DNN推理效率提高了3.3倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Domain-Specific System-On-Chip Design for Energy Efficient Wearable Edge AI Applications HOGEye: Neural Approximation of HOG Feature Extraction in RRAM-Based 3D-Stacked Image Sensors Improving Performance and Power by Co-Optimizing Middle-of-Line Routing, Pin Pattern Generation, and Contact over Active Gates in Standard Cell Layout Synthesis Exploiting successive identical words and differences with dynamic bases for effective compression in Non-Volatile Memories Canopy: A CNFET-based Process Variation Aware Systolic DNN Accelerator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1