Autonomous Decentralized Privacy-Enabled Data Preparation Architecture for Multicenter Clinical Observational Research

Khalid Mahmood, Varun Sathyan, H. Kanaan, G. Malik, Hafiz Malik
{"title":"Autonomous Decentralized Privacy-Enabled Data Preparation Architecture for Multicenter Clinical Observational Research","authors":"Khalid Mahmood, Varun Sathyan, H. Kanaan, G. Malik, Hafiz Malik","doi":"10.1109/ISADS.2017.38","DOIUrl":null,"url":null,"abstract":"Tailoring treatment and clinical decision making to a person's unique characteristics is the next milestone for healthcare informatics, but for it to be accomplished, big data analytics for identifying risk factors and other hidden patterns among patients become paramount. In future these analytics will take the form of multicenter observational research, for which data preparation is vital. Specifically, quality data must be obtained in a timely manner while protecting the privacy of patients in the health records shared among researchers. Furthermore, the coordination and cooperation of a fluctuating number of medical data sources containing these records for clinical data distribution is an additional requirement in multicenter studies. Thus, we propose an autonomous decentralized, privacy-enabled data preparation architecture and novel SEDTM algorithm to meet these requirements, censuring sensitive information via filtration, and extracting relevant clinical data with a fully automated approach. Our evaluation demonstrates a 40% - 60% increase in the retrieval of quality patient data, compared to traditional semantic similarity, for our proposed SEDTM algorithm.","PeriodicalId":303882,"journal":{"name":"2017 IEEE 13th International Symposium on Autonomous Decentralized System (ISADS)","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 13th International Symposium on Autonomous Decentralized System (ISADS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISADS.2017.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Tailoring treatment and clinical decision making to a person's unique characteristics is the next milestone for healthcare informatics, but for it to be accomplished, big data analytics for identifying risk factors and other hidden patterns among patients become paramount. In future these analytics will take the form of multicenter observational research, for which data preparation is vital. Specifically, quality data must be obtained in a timely manner while protecting the privacy of patients in the health records shared among researchers. Furthermore, the coordination and cooperation of a fluctuating number of medical data sources containing these records for clinical data distribution is an additional requirement in multicenter studies. Thus, we propose an autonomous decentralized, privacy-enabled data preparation architecture and novel SEDTM algorithm to meet these requirements, censuring sensitive information via filtration, and extracting relevant clinical data with a fully automated approach. Our evaluation demonstrates a 40% - 60% increase in the retrieval of quality patient data, compared to traditional semantic similarity, for our proposed SEDTM algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多中心临床观察研究的自主分散隐私数据准备体系结构
根据患者的独特特征定制治疗和临床决策是医疗保健信息学的下一个里程碑,但要实现这一目标,用于识别患者风险因素和其他隐藏模式的大数据分析变得至关重要。在未来,这些分析将采取多中心观察研究的形式,其中数据准备至关重要。具体来说,必须及时获得高质量的数据,同时保护研究人员之间共享的健康记录中患者的隐私。此外,在多中心研究中,包含这些临床数据分布记录的医疗数据源的数量波动的协调和合作是一个额外的要求。因此,我们提出了一种自主分散的、支持隐私的数据准备架构和新颖的SEDTM算法来满足这些要求,通过过滤来审查敏感信息,并以完全自动化的方法提取相关临床数据。我们的评估表明,与传统的语义相似度相比,我们提出的SEDTM算法在检索高质量患者数据方面提高了40% - 60%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Versatile Simulation Model of Agile Production by Autonomous Systems Inverse Innovation: Ripple Railway Model to Acquire Local Industries Based on User’s Viewpoint in Thailand Massive-Scale Automation in Cyber-Physical Systems: Vision & Challenges An On-line Fault Diagnosis Method for Gas Engine Using AP Clustering Autonomous Control Technique for Gradual Systems Expansion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1