Study of different ANN algorithms for weak area identification of power systems

G. Shankar, V. Mukherjee, S. Debnath, Kamaljyoti Gogoi
{"title":"Study of different ANN algorithms for weak area identification of power systems","authors":"G. Shankar, V. Mukherjee, S. Debnath, Kamaljyoti Gogoi","doi":"10.1109/ICPEN.2012.6492342","DOIUrl":null,"url":null,"abstract":"This paper presents the suitability of different artificial neural network (ANN) algorithms in estimating the voltage instability of power systems. The ANN models based on different training algorithm are designed and a comparative study is carried out to accurately predict the voltage collapse phenomenon. In the present study, L-index is used as the voltage collapse proximity indicator. This approach is tested on a sample 5-bus system taken from the literature. It is found that the results obtained are quite promising in predicting the voltage collapse phenomenon.","PeriodicalId":336723,"journal":{"name":"2012 1st International Conference on Power and Energy in NERIST (ICPEN)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 1st International Conference on Power and Energy in NERIST (ICPEN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPEN.2012.6492342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents the suitability of different artificial neural network (ANN) algorithms in estimating the voltage instability of power systems. The ANN models based on different training algorithm are designed and a comparative study is carried out to accurately predict the voltage collapse phenomenon. In the present study, L-index is used as the voltage collapse proximity indicator. This approach is tested on a sample 5-bus system taken from the literature. It is found that the results obtained are quite promising in predicting the voltage collapse phenomenon.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同人工神经网络算法在电力系统弱区识别中的应用研究
本文介绍了不同的人工神经网络算法在电力系统电压不稳定估计中的适用性。设计了基于不同训练算法的人工神经网络模型,并进行了对比研究,以准确预测电压崩溃现象。在本研究中,采用l指数作为电压崩溃接近指标。这种方法在一个从文献中获取的5总线系统样本上进行了测试。所得结果对电压崩溃现象的预测具有较好的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
[Copyright notice] Trends and challenges in optimization techniques for operation and control of Microgrid - A review Exploring wind energy for hybrid power generation in a low wind regime Automatic generation control of multi-area hydro system using classical controllers Automatic Leveling Mechanism for Weapon Systems Launching Platform using Induction Motor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1