Wind Prediction Based on General Regression Neural Network

Chun-Yao Lee, Yan-Lou He
{"title":"Wind Prediction Based on General Regression Neural Network","authors":"Chun-Yao Lee, Yan-Lou He","doi":"10.1109/ISDEA.2012.520","DOIUrl":null,"url":null,"abstract":"This study adopts the general regression neural network (GRNN) to predict wind speeds. The training data sets are the real wind speeds obtained from CKS International Airport. The 5 days (120 hours) of the three year from 2006 to 2008 is selected as an example to appraise the prediction performance by using GRNN. Comparing to the traditional linear time-series-based model, the superiority of GRNN method to wind prediction can be valid.","PeriodicalId":267532,"journal":{"name":"2012 Second International Conference on Intelligent System Design and Engineering Application","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Second International Conference on Intelligent System Design and Engineering Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDEA.2012.520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This study adopts the general regression neural network (GRNN) to predict wind speeds. The training data sets are the real wind speeds obtained from CKS International Airport. The 5 days (120 hours) of the three year from 2006 to 2008 is selected as an example to appraise the prediction performance by using GRNN. Comparing to the traditional linear time-series-based model, the superiority of GRNN method to wind prediction can be valid.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于广义回归神经网络的风预报
本研究采用广义回归神经网络(GRNN)进行风速预测。训练数据集为从中港国际机场获得的真实风速。以2006 - 2008年3年的5天(120小时)为例,评价GRNN的预测效果。与传统的基于线性时间序列的模型相比,GRNN方法在风力预测方面的优越性是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of DES Method to the Numerical Study of Shock Oscillations on a Supercritical Airfoil The Topological Detection Algorithm of Object Arrays in Noisy Context Based on Fuzzy Spatial Information Fusion and Prim Algorithm Robust Adaptive Fuzzy Tracking Control of Stochastic Neuron Systems A Framework for Agent-Based Collaborative Information Processing in Distributed Sensor Network Hydro Generation Scheduling Using Refined Genetic Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1