Improving the Variational Quantum Eigensolver Using Variational Adiabatic Quantum Computing

Stuart M. Harwood, Dimitar Trenev, Spencer T. Stober, P. Barkoutsos, Tanvi P. Gujarati, S. Mostame, Donny Greenberg
{"title":"Improving the Variational Quantum Eigensolver Using Variational Adiabatic Quantum Computing","authors":"Stuart M. Harwood, Dimitar Trenev, Spencer T. Stober, P. Barkoutsos, Tanvi P. Gujarati, S. Mostame, Donny Greenberg","doi":"10.1145/3479197","DOIUrl":null,"url":null,"abstract":"The variational quantum eigensolver (VQE) is a hybrid quantum-classical algorithm for finding the minimum eigenvalue of a Hamiltonian that involves the optimization of a parameterized quantum circuit. Since the resulting optimization problem is in general nonconvex, the method can converge to suboptimal parameter values that do not yield the minimum eigenvalue. In this work, we address this shortcoming by adopting the concept of variational adiabatic quantum computing (VAQC) as a procedure to improve VQE. In VAQC, the ground state of a continuously parameterized Hamiltonian is approximated via a parameterized quantum circuit. We discuss some basic theory of VAQC to motivate the development of a hybrid quantum-classical homotopy continuation method. The proposed method has parallels with a predictor-corrector method for numerical integration of differential equations. While there are theoretical limitations to the procedure, we see in practice that VAQC can successfully find good initial circuit parameters to initialize VQE. We demonstrate this with two examples from quantum chemistry. Through these examples, we provide empirical evidence that VAQC, combined with other techniques (an adaptive termination criteria for the classical optimizer and a variance-based resampling method for the expectation evaluation), can provide more accurate solutions than “plain” VQE, for the same amount of effort.","PeriodicalId":365166,"journal":{"name":"ACM Transactions on Quantum Computing","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Quantum Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3479197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

The variational quantum eigensolver (VQE) is a hybrid quantum-classical algorithm for finding the minimum eigenvalue of a Hamiltonian that involves the optimization of a parameterized quantum circuit. Since the resulting optimization problem is in general nonconvex, the method can converge to suboptimal parameter values that do not yield the minimum eigenvalue. In this work, we address this shortcoming by adopting the concept of variational adiabatic quantum computing (VAQC) as a procedure to improve VQE. In VAQC, the ground state of a continuously parameterized Hamiltonian is approximated via a parameterized quantum circuit. We discuss some basic theory of VAQC to motivate the development of a hybrid quantum-classical homotopy continuation method. The proposed method has parallels with a predictor-corrector method for numerical integration of differential equations. While there are theoretical limitations to the procedure, we see in practice that VAQC can successfully find good initial circuit parameters to initialize VQE. We demonstrate this with two examples from quantum chemistry. Through these examples, we provide empirical evidence that VAQC, combined with other techniques (an adaptive termination criteria for the classical optimizer and a variance-based resampling method for the expectation evaluation), can provide more accurate solutions than “plain” VQE, for the same amount of effort.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用变分绝热量子计算改进变分量子本征解
变分量子特征求解器(VQE)是一种量子与经典的混合算法,用于求解涉及参数化量子电路优化的哈密顿算子的最小特征值。由于所得到的优化问题一般是非凸的,因此该方法可以收敛到不产生最小特征值的次优参数值。在这项工作中,我们通过采用变分绝热量子计算(VAQC)的概念作为改进VQE的程序来解决这一缺点。在vacqc中,连续参数化哈密顿量的基态是通过一个参数化量子电路来逼近的。本文讨论了vacqc的一些基本理论,以促进混合量子-经典同伦延拓方法的发展。该方法与微分方程数值积分的预测校正方法相似。虽然该过程存在理论上的局限性,但我们在实践中看到,VAQC可以成功地找到良好的初始电路参数来初始化VQE。我们用量子化学中的两个例子来证明这一点。通过这些例子,我们提供了经验证据,证明VAQC结合其他技术(经典优化器的自适应终止准则和期望评估的基于方差的重采样方法),在相同的工作量下,可以提供比“普通”VQE更准确的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Revisiting the Mapping of Quantum Circuits: Entering the Multi-Core Era An optimal linear-combination-of-unitaries-based quantum linear system solver Efficient Syndrome Decoder for Heavy Hexagonal QECC via Machine Learning Improving the Efficiency of Quantum Circuits for Information Set Decoding Quantum Bilinear Interpolation Algorithms Based on Geometric Centers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1