Multi-scales feature integration single shot multi-box detector on small object detection

Jianbang Zhou, Bo Chen, Jiahao Zhang, Zhong Chen, Jian Yang
{"title":"Multi-scales feature integration single shot multi-box detector on small object detection","authors":"Jianbang Zhou, Bo Chen, Jiahao Zhang, Zhong Chen, Jian Yang","doi":"10.1117/12.2538020","DOIUrl":null,"url":null,"abstract":"SSD (Single Shot Multi-box Detector) is one of the best object detection algorithms with both high accuracy and fast speed. However, SSD’s feature pyramid detection method only extracts the features from different scales without further procession, which leads to semantic information lost. In this paper, we proposed Multi-scales Feature Integration SSD, an enhanced SSD with feature integrated modules which can improve the performance significantly over SSD. In the feature integrated modules, features from different layers with different scales are concatenated together after some upsampling tricks, then we use the features as input of several convolutional modules, those modules will be fed to multibox detectors to predict the final results. We test our algorithm On the Pascal VOC 2007test with the input size 300×300 using a single Nvidia 1080Ti GPU. In addition, our network outperforms a lot of state-of-the-art object detection algorithms in both aspects of accuracy and speed.","PeriodicalId":384253,"journal":{"name":"International Symposium on Multispectral Image Processing and Pattern Recognition","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Multispectral Image Processing and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2538020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

SSD (Single Shot Multi-box Detector) is one of the best object detection algorithms with both high accuracy and fast speed. However, SSD’s feature pyramid detection method only extracts the features from different scales without further procession, which leads to semantic information lost. In this paper, we proposed Multi-scales Feature Integration SSD, an enhanced SSD with feature integrated modules which can improve the performance significantly over SSD. In the feature integrated modules, features from different layers with different scales are concatenated together after some upsampling tricks, then we use the features as input of several convolutional modules, those modules will be fed to multibox detectors to predict the final results. We test our algorithm On the Pascal VOC 2007test with the input size 300×300 using a single Nvidia 1080Ti GPU. In addition, our network outperforms a lot of state-of-the-art object detection algorithms in both aspects of accuracy and speed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多尺度特征集成单镜头多盒探测器对小目标的检测
单镜头多盒检测(Single Shot Multi-box Detector, SSD)是目前精度高、速度快的目标检测算法之一。然而,SSD的特征金字塔检测方法只提取不同尺度的特征,没有进行进一步的处理,导致语义信息丢失。在本文中,我们提出了多尺度特征集成SSD,这是一种具有特征集成模块的增强型SSD,可以显著提高SSD的性能。在特征集成模块中,通过一些上采样技巧将不同尺度的不同层的特征连接在一起,然后将这些特征作为多个卷积模块的输入,这些模块将被送入多盒检测器来预测最终结果。我们使用单个Nvidia 1080Ti GPU在Pascal VOC 2007测试上测试我们的算法,输入大小为300×300。此外,我们的网络在准确性和速度方面都优于许多最先进的目标检测算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image fusion for multimodality image via domain transfer and nonrigid transformation Dimensionality reduction of hyperspectral images based on subspace combination clustering and adaptive band selection Remote multi-object detection based on bounding box field Facial morphe via domain translation and FM2RLS Restoration of haze-free images using generative adversarial network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1