{"title":"A New Scheme for Automatic Initialization of Deformable Models","authors":"Weijia Shen, A. Kassim","doi":"10.1109/ICIP.2007.4380011","DOIUrl":null,"url":null,"abstract":"This paper presents a novel scheme for automatic initialization for all types of deformable models. Our method is able to automatically generate a close-to-boundary initialization which is independent of the subsequent segmentation process. Therefore, our method enables different types of deformable models achieve more accurate and robust results. Topographic independent component analysis (TICA) based feature extraction technique is presented for learning a representation from a set of un-labeled image patches. During learning, a topographic map of basis components emerge. An intelligent contour generation procedure is also proposed. Experimental results on abdominal CT images demonstrate the potential of our approach.","PeriodicalId":131177,"journal":{"name":"2007 IEEE International Conference on Image Processing","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2007.4380011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
This paper presents a novel scheme for automatic initialization for all types of deformable models. Our method is able to automatically generate a close-to-boundary initialization which is independent of the subsequent segmentation process. Therefore, our method enables different types of deformable models achieve more accurate and robust results. Topographic independent component analysis (TICA) based feature extraction technique is presented for learning a representation from a set of un-labeled image patches. During learning, a topographic map of basis components emerge. An intelligent contour generation procedure is also proposed. Experimental results on abdominal CT images demonstrate the potential of our approach.