Learning Orientation-Estimation Convolutional Neural Network for Building Detection in Optical Remote Sensing Image

Yongliang Chen, W. Gong, Chaoyue Chen, Weihong Li
{"title":"Learning Orientation-Estimation Convolutional Neural Network for Building Detection in Optical Remote Sensing Image","authors":"Yongliang Chen, W. Gong, Chaoyue Chen, Weihong Li","doi":"10.1109/DICTA.2018.8615859","DOIUrl":null,"url":null,"abstract":"Benefiting from the great success of deep learning in computer vision, object detection with Convolutional Neural Network (CNN) based methods have drawn significant attentions. Various frameworks have been proposed which show awesome and robust performance for a large range of datasets. However, for building detection in remote sensing images, buildings always pose a diversity of orientation which makes it a challenge for the application of off-the-shelf methods to building detection in remote sensing images. In this work, we aim to integrate orientation regression into the popular axis-aligned bounding box to tackle this problem. To adapt the axis-aligned bounding boxes to arbitrarily orientated ones, we also develop an algorithm to estimate the Intersection Over Union (IOU) overlap between any two arbitrarily oriented boxes which is convenient to implement in Graphics Processing Unit (GPU) for fast computation. The proposed method utilizes CNN for both robust feature extraction and bounding box regression. We present our model in an end-to-end fashion making it easy to train. The model is formulated and trained to predict both orientation and location simultaneously obtaining tighter bounding box and hence, higher mean average precision (mAP). Experiments on remote sensing images of different scales shows a promising performance over the conventional one.","PeriodicalId":130057,"journal":{"name":"2018 Digital Image Computing: Techniques and Applications (DICTA)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2018.8615859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Benefiting from the great success of deep learning in computer vision, object detection with Convolutional Neural Network (CNN) based methods have drawn significant attentions. Various frameworks have been proposed which show awesome and robust performance for a large range of datasets. However, for building detection in remote sensing images, buildings always pose a diversity of orientation which makes it a challenge for the application of off-the-shelf methods to building detection in remote sensing images. In this work, we aim to integrate orientation regression into the popular axis-aligned bounding box to tackle this problem. To adapt the axis-aligned bounding boxes to arbitrarily orientated ones, we also develop an algorithm to estimate the Intersection Over Union (IOU) overlap between any two arbitrarily oriented boxes which is convenient to implement in Graphics Processing Unit (GPU) for fast computation. The proposed method utilizes CNN for both robust feature extraction and bounding box regression. We present our model in an end-to-end fashion making it easy to train. The model is formulated and trained to predict both orientation and location simultaneously obtaining tighter bounding box and hence, higher mean average precision (mAP). Experiments on remote sensing images of different scales shows a promising performance over the conventional one.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于学习方向估计卷积神经网络的光学遥感图像建筑物检测
得益于深度学习在计算机视觉领域的巨大成功,基于卷积神经网络(CNN)的目标检测方法备受关注。已经提出了各种框架,它们在大范围的数据集上表现出令人敬畏和强大的性能。然而,对于遥感图像中的建筑物检测来说,建筑物总是具有多样性的方向,这给现成的方法在遥感图像中建筑物检测中的应用带来了挑战。在这项工作中,我们的目标是将方向回归集成到流行的轴对齐边界框中来解决这个问题。为了使轴线对齐的边界框适应于任意方向的边界框,我们还开发了一种算法来估计任意两个任意方向的边界框之间的交联(Intersection Over Union, IOU)重叠,该算法便于在图形处理单元(GPU)中实现,以实现快速计算。该方法利用CNN进行鲁棒特征提取和边界盒回归。我们以端到端方式呈现我们的模型,使其易于训练。模型的制定和训练可以同时预测方向和位置,从而获得更紧密的边界框,从而获得更高的平均精度(mAP)。在不同尺度遥感图像上的实验表明,该方法优于传统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Satellite Multi-Vehicle Tracking under Inconsistent Detection Conditions by Bilevel K-Shortest Paths Optimization Classification of White Blood Cells using Bispectral Invariant Features of Nuclei Shape Impulse-Equivalent Sequences and Arrays Impact of MRI Protocols on Alzheimer's Disease Detection Strided U-Net Model: Retinal Vessels Segmentation using Dice Loss
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1