Anonymous Identification for Ad Hoc Group

Xingye Lu, M. Au
{"title":"Anonymous Identification for Ad Hoc Group","authors":"Xingye Lu, M. Au","doi":"10.1145/2897845.2897903","DOIUrl":null,"url":null,"abstract":"An anonymous identification scheme for ad hoc group allows a participant to identify himself as a member of a group of users in a way that his actual identity is not revealed. We propose a highly efficient construction of this cryptographic primitive in the symmetric key setting based on the idea of program obfuscation. The salient feature of our scheme is that only hash evaluations are needed. Consequently, our scheme outperforms all existing constructions for a reasonably large ad hoc group size (of around 50000 users) since no exponentiation nor pairing operation is involved. Technically, the participant only needs to evaluate one hash operation to identify himself. While the time complexity of the verifier is linearly in the size of the ad hoc group, the actual running time is rather insignificant since the constant factor of this linear dependence is the time of a single hash evaluation. To analyse the security of our proposal, we develop a security model to capture the security requirements of this primitive and prove that our construction satisfies these requirements in the random oracle model against unbounded attackers. Similar to other identification schemes secure in the random oracle model, our proposed protocol requires only two message flow.","PeriodicalId":166633,"journal":{"name":"Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2897845.2897903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An anonymous identification scheme for ad hoc group allows a participant to identify himself as a member of a group of users in a way that his actual identity is not revealed. We propose a highly efficient construction of this cryptographic primitive in the symmetric key setting based on the idea of program obfuscation. The salient feature of our scheme is that only hash evaluations are needed. Consequently, our scheme outperforms all existing constructions for a reasonably large ad hoc group size (of around 50000 users) since no exponentiation nor pairing operation is involved. Technically, the participant only needs to evaluate one hash operation to identify himself. While the time complexity of the verifier is linearly in the size of the ad hoc group, the actual running time is rather insignificant since the constant factor of this linear dependence is the time of a single hash evaluation. To analyse the security of our proposal, we develop a security model to capture the security requirements of this primitive and prove that our construction satisfies these requirements in the random oracle model against unbounded attackers. Similar to other identification schemes secure in the random oracle model, our proposed protocol requires only two message flow.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ad Hoc组的匿名标识
临时组的匿名标识方案允许参与者以不泄露其实际身份的方式将自己标识为用户组的成员。基于程序混淆的思想,我们提出了一种在对称密钥设置中高效构造这种密码原语的方法。我们方案的显著特点是只需要哈希计算。因此,对于相当大的临时组规模(大约50000个用户),我们的方案优于所有现有结构,因为不涉及求幂和配对操作。从技术上讲,参与者只需要评估一个哈希操作来标识自己。虽然验证者的时间复杂度与特设组的大小呈线性关系,但实际运行时间相当微不足道,因为这种线性依赖的恒定因素是单个哈希计算的时间。为了分析我们的提议的安全性,我们开发了一个安全模型来捕获这个原语的安全需求,并证明我们的构造在随机oracle模型中满足这些需求,以对抗无界攻击者。与其他在随机oracle模型中安全的标识方案类似,我们提出的协议只需要两个消息流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generally Hybrid Proxy Re-Encryption: A Secure Data Sharing among Cryptographic Clouds Hardening OpenStack Cloud Platforms against Compute Node Compromises Data Exfiltration in the Face of CSP Anonymous Identity-Based Broadcast Encryption with Constant Decryption Complexity and Strong Security FLEX: A Flexible Code Authentication Framework for Delegating Mobile App Customization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1