Optimizing Data Intensive Flows for Networks on Chips

Junwei Zhang, Yang Liu, Shi Li, T. Robertazzi
{"title":"Optimizing Data Intensive Flows for Networks on Chips","authors":"Junwei Zhang, Yang Liu, Shi Li, T. Robertazzi","doi":"10.1142/S0129626421500134","DOIUrl":null,"url":null,"abstract":"A novel framework is proposed to find efficient data intensive flow distributions on Networks on Chip (NoC). Voronoi diagram techniques are used to divide a NoC array of homogeneous processors and links into clusters. A new mathematical tool, named the flow matrix, is proposed to find the optimal flow distribution for individual clusters. Individual flow distributions on clusters are reconciled to be more evenly distributed. This leads to an efficient makespan and a significant savings in the number of cores actually used. The approach here is described in terms of a mesh interconnection but is suitable for other interconnection topologies.","PeriodicalId":422436,"journal":{"name":"Parallel Process. Lett.","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Process. Lett.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129626421500134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A novel framework is proposed to find efficient data intensive flow distributions on Networks on Chip (NoC). Voronoi diagram techniques are used to divide a NoC array of homogeneous processors and links into clusters. A new mathematical tool, named the flow matrix, is proposed to find the optimal flow distribution for individual clusters. Individual flow distributions on clusters are reconciled to be more evenly distributed. This leads to an efficient makespan and a significant savings in the number of cores actually used. The approach here is described in terms of a mesh interconnection but is suitable for other interconnection topologies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化芯片上网络的数据密集型流
提出了一种在芯片网络(NoC)上寻找高效数据密集型流分布的新框架。Voronoi图技术用于将同构处理器和链接的NoC阵列划分为集群。提出了一种新的数学工具,称为流量矩阵,用于寻找单个簇的最优流量分布。单个流量在集群上的分布被调和为更均匀的分布。这将导致有效的makespan,并显著节省实际使用的内核数量。这里的方法是根据网状互连来描述的,但也适用于其他互连拓扑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Note to Non-adaptive Broadcasting Semi-Supervised Node Classification via Semi-Global Graph Transformer Based on Homogeneity Augmentation 4-Free Strong Digraphs with the Maximum Size Relation-aware Graph Contrastive Learning The Normalized Laplacian Spectrum of Folded Hypercube with Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1