Comparing Approaches for Query Autocompletion

Giovanni Di Santo, R. McCreadie, C. Macdonald, I. Ounis
{"title":"Comparing Approaches for Query Autocompletion","authors":"Giovanni Di Santo, R. McCreadie, C. Macdonald, I. Ounis","doi":"10.1145/2766462.2767829","DOIUrl":null,"url":null,"abstract":"Within a search engine, query auto-completion aims to predict the final query the user wants to enter as they type, with the aim of reducing query entry time and potentially preparing the search results in advance of query submission. There are a large number of approaches to automatically rank candidate queries for the purposes of auto-completion. However, no study exists that compares these approaches on a single dataset. Hence, in this paper, we present a comparison study between current approaches to rank candidate query completions for the user query as it is typed. Using a query-log and document corpus from a commercial medical search engine, we study the performance of 11 candidate query ranking approaches from the literature and analyze where they are effective. We show that the most effective approaches to query auto-completion are largely dependent on the number of characters that the user has typed so far, with the most effective approach differing for short and long prefixes. Moreover, we show that if personalized information is available about the searcher, this additional information can be used to more effectively rank query candidate completions, regardless of the prefix length.","PeriodicalId":297035,"journal":{"name":"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2766462.2767829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

Within a search engine, query auto-completion aims to predict the final query the user wants to enter as they type, with the aim of reducing query entry time and potentially preparing the search results in advance of query submission. There are a large number of approaches to automatically rank candidate queries for the purposes of auto-completion. However, no study exists that compares these approaches on a single dataset. Hence, in this paper, we present a comparison study between current approaches to rank candidate query completions for the user query as it is typed. Using a query-log and document corpus from a commercial medical search engine, we study the performance of 11 candidate query ranking approaches from the literature and analyze where they are effective. We show that the most effective approaches to query auto-completion are largely dependent on the number of characters that the user has typed so far, with the most effective approach differing for short and long prefixes. Moreover, we show that if personalized information is available about the searcher, this additional information can be used to more effectively rank query candidate completions, regardless of the prefix length.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
比较查询自动完成的方法
在搜索引擎中,查询自动完成旨在预测用户键入时想要输入的最终查询,目的是减少查询输入时间,并可能在查询提交之前准备好搜索结果。有很多方法可以自动对候选查询进行排序,以实现自动完成。然而,目前还没有研究在单一数据集上对这些方法进行比较。因此,在本文中,我们提出了一项比较研究,在用户查询输入时对候选查询补全排序的当前方法之间进行比较。使用来自商业医疗搜索引擎的查询日志和文档语料库,我们研究了文献中11种候选查询排序方法的性能,并分析了它们在哪些方面是有效的。我们展示了查询自动完成的最有效方法在很大程度上取决于用户到目前为止输入的字符数量,对于短前缀和长前缀,最有效的方法是不同的。此外,我们表明,如果有关于搜索者的个性化信息,那么这些附加信息可以用于更有效地对查询候选补全进行排序,而不管前缀长度如何。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Regularised Cross-Modal Hashing Adapted B-CUBED Metrics to Unbalanced Datasets Incorporating Non-sequential Behavior into Click Models Time Pressure in Information Search Modeling Multi-query Retrieval Tasks Using Density Matrix Transformation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1