Edge Computing for Mobile Robots: Multi-Robot Feature-Based Lidar Odometry with FPGAs

Qingqing Li, F. Yuhong, J. P. Queralta, Tuan Anh Nguyen Gia, H. Tenhunen, Zhuo Zou, Tomi Westerlund
{"title":"Edge Computing for Mobile Robots: Multi-Robot Feature-Based Lidar Odometry with FPGAs","authors":"Qingqing Li, F. Yuhong, J. P. Queralta, Tuan Anh Nguyen Gia, H. Tenhunen, Zhuo Zou, Tomi Westerlund","doi":"10.23919/ICMU48249.2019.9006646","DOIUrl":null,"url":null,"abstract":"Offloading computationally intensive tasks such as lidar or visual odometry from mobile robots has multiple benefits. Resource constrained robots can make use of their network capabilities to reduce the data processing load and be able to perform a larger number tasks in a more efficient manner. However, previous works have mostly focused on cloud offloading, which increases latency and reduces reliability, or high-end edge devices. Instead, we explore the utilization of FPGAs at the edge for computational offloading with minimal latency and high parallelism. We present the potential for modelling feature-based odometry in VHDL and utilizing FPGA implementations.","PeriodicalId":348402,"journal":{"name":"2019 Twelfth International Conference on Mobile Computing and Ubiquitous Network (ICMU)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Twelfth International Conference on Mobile Computing and Ubiquitous Network (ICMU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICMU48249.2019.9006646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Offloading computationally intensive tasks such as lidar or visual odometry from mobile robots has multiple benefits. Resource constrained robots can make use of their network capabilities to reduce the data processing load and be able to perform a larger number tasks in a more efficient manner. However, previous works have mostly focused on cloud offloading, which increases latency and reduces reliability, or high-end edge devices. Instead, we explore the utilization of FPGAs at the edge for computational offloading with minimal latency and high parallelism. We present the potential for modelling feature-based odometry in VHDL and utilizing FPGA implementations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
移动机器人的边缘计算:基于fpga的多机器人特征激光雷达里程计
从移动机器人中卸载诸如激光雷达或视觉里程计等计算密集型任务具有多种好处。资源受限的机器人可以利用其网络能力来减少数据处理负载,并能够以更有效的方式执行更多的任务。然而,之前的工作主要集中在云卸载上,这会增加延迟并降低可靠性,或者高端边缘设备。相反,我们探索fpga在边缘的利用,以最小的延迟和高并行性进行计算卸载。我们提出了在VHDL中建模基于特征的里程计并利用FPGA实现的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Number of TCP Connections to Saturate Bandwidth of Wireless Networks Detour Path Angular Information based Range Free Localization with Last Hop RSSI Measurement based Distance Calculation [Copyright notice] Prediction of Post-induction Hypotension Using Stacking Method Improving Accuracy of Localization with Portable APs in Ultra-Narrow-Band-based LPWA Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1