A Comprehensive Exploration on Impact of Preprocessing for Prediction of Chronic Kidney Disease Using Multiple Machine Learning Approaches

Nahid Hossain Taz, Abrar Islam, Ishrak Mahmud, Ehtashamul Haque, Md. Raqibur Rahman
{"title":"A Comprehensive Exploration on Impact of Preprocessing for Prediction of Chronic Kidney Disease Using Multiple Machine Learning Approaches","authors":"Nahid Hossain Taz, Abrar Islam, Ishrak Mahmud, Ehtashamul Haque, Md. Raqibur Rahman","doi":"10.1109/icsct53883.2021.9642638","DOIUrl":null,"url":null,"abstract":"This manuscript aims to develop a framework to deliver the prediction of Chronic Kidney Disease (CKD) for a patient using the Machine Learning technique. The performance of five individual Machine Learning classifiers is analyzed for the purpose of clarifying the performance measures of CKD. According to average classification accuracy, precision, recall, and fl score, the decisions are estimated along with the ROC AUC score. For this investigation, Logistic Regression, K Nearest Neighbor, Support Vector Machine, Naive Bayes, and Random Forest classifiers are applied as distinct classifiers. In order to increase and stabilize the performance metrics of the classifiers, necessary data preprocessing is carried out on the CKD dataset. Observation of the corresponding performance metrics indicates that Random Forest has outperformed all the other classifiers by producing an accuracy score of 93.4% and ROC AUC of 94.4% before data preprocessing and an accuracy score of 95.6% and ROC AUC of 96.2% after necessary data preprocessing.","PeriodicalId":320103,"journal":{"name":"2021 International Conference on Science & Contemporary Technologies (ICSCT)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Science & Contemporary Technologies (ICSCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icsct53883.2021.9642638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This manuscript aims to develop a framework to deliver the prediction of Chronic Kidney Disease (CKD) for a patient using the Machine Learning technique. The performance of five individual Machine Learning classifiers is analyzed for the purpose of clarifying the performance measures of CKD. According to average classification accuracy, precision, recall, and fl score, the decisions are estimated along with the ROC AUC score. For this investigation, Logistic Regression, K Nearest Neighbor, Support Vector Machine, Naive Bayes, and Random Forest classifiers are applied as distinct classifiers. In order to increase and stabilize the performance metrics of the classifiers, necessary data preprocessing is carried out on the CKD dataset. Observation of the corresponding performance metrics indicates that Random Forest has outperformed all the other classifiers by producing an accuracy score of 93.4% and ROC AUC of 94.4% before data preprocessing and an accuracy score of 95.6% and ROC AUC of 96.2% after necessary data preprocessing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
综合探讨预处理对多重机器学习方法预测慢性肾病的影响
本文旨在开发一个框架,使用机器学习技术为患者提供慢性肾脏疾病(CKD)的预测。为了阐明CKD的性能指标,分析了五个单独的机器学习分类器的性能。根据平均分类准确度、精密度、召回率和fl分数,与ROC AUC分数一起估计决策。在这项研究中,逻辑回归、K近邻、支持向量机、朴素贝叶斯和随机森林分类器被用作不同的分类器。为了提高和稳定分类器的性能指标,对CKD数据集进行了必要的数据预处理。对相应性能指标的观察表明,Random Forest在数据预处理前的准确率得分为93.4%,ROC AUC为94.4%,在必要的数据预处理后的准确率得分为95.6%,ROC AUC为96.2%,优于所有其他分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Finite Element Prediction of Deformation of Closed-cell Cellular Materials for Sustainable Materials Characterisation An Advanced Recommendation System by Combining Popularity-Based and User-Based Collaborative Filtering Using Machine Learning. [ICSCT 2021 Copyright notice] Improving Quality of Service in Computer Networks Applying the Eight Classes of Service Proposal of Pattern-Reconfigurable Self-Oscillating Active Array Antenna Integrating Slot-Line Gunn Oscillator and Hybrid Coupler
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1