Magneto approach to QoS monitoring

S. Handurukande, Szymon Fedor, Stefan Wallin, Martin Zach
{"title":"Magneto approach to QoS monitoring","authors":"S. Handurukande, Szymon Fedor, Stefan Wallin, Martin Zach","doi":"10.1109/INM.2011.5990693","DOIUrl":null,"url":null,"abstract":"Quality of Service (QoS) monitoring of end-user services is an integral and indispensable part of service management. However in large, heterogeneous and complex networks where there are many services, many types of end-user devices, and huge numbers of subscribers, it is not trivial to monitor QoS and estimate the status of Service Level Agreements (SLAs). Furthermore, the overwhelming majority of end-terminals do not provide precise information about QoS which aggravates the difficulty of keeping track of SLAs. In this paper, we describe a solution that combines a number of techniques in a novel and unique way to overcome the complexity and difficulty of QoS monitoring. Our solution uses a model driven approach to service modeling, data mining techniques on small sample sets of terminal QoS reports (from “smarter” end-user devices), and network level key performance indicators (N-KPIs) from probes to address this problem. Service modeling techniques empowered with a modeling engine and a purpose-built language hide the complexity of SLA status monitoring. The data mining technique uses its own engine and learnt data models to estimate QoS values based on N-KPIs, and feeds the estimated values to the modeling engine to calculate SLAs. We describe our solution, the prototype and experimental results in the paper.","PeriodicalId":433520,"journal":{"name":"12th IFIP/IEEE International Symposium on Integrated Network Management (IM 2011) and Workshops","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th IFIP/IEEE International Symposium on Integrated Network Management (IM 2011) and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INM.2011.5990693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Quality of Service (QoS) monitoring of end-user services is an integral and indispensable part of service management. However in large, heterogeneous and complex networks where there are many services, many types of end-user devices, and huge numbers of subscribers, it is not trivial to monitor QoS and estimate the status of Service Level Agreements (SLAs). Furthermore, the overwhelming majority of end-terminals do not provide precise information about QoS which aggravates the difficulty of keeping track of SLAs. In this paper, we describe a solution that combines a number of techniques in a novel and unique way to overcome the complexity and difficulty of QoS monitoring. Our solution uses a model driven approach to service modeling, data mining techniques on small sample sets of terminal QoS reports (from “smarter” end-user devices), and network level key performance indicators (N-KPIs) from probes to address this problem. Service modeling techniques empowered with a modeling engine and a purpose-built language hide the complexity of SLA status monitoring. The data mining technique uses its own engine and learnt data models to estimate QoS values based on N-KPIs, and feeds the estimated values to the modeling engine to calculate SLAs. We describe our solution, the prototype and experimental results in the paper.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磁控方法的QoS监控
终端用户服务的服务质量(QoS)监控是服务管理中不可缺少的重要组成部分。然而,在大型、异构和复杂的网络中,存在许多服务、许多类型的最终用户设备和大量的订阅者,监控QoS和估计服务水平协议(sla)的状态并非易事。此外,绝大多数终端不提供关于QoS的精确信息,这加剧了跟踪sla的困难。在本文中,我们描述了一种解决方案,它以一种新颖而独特的方式结合了许多技术来克服QoS监控的复杂性和困难。我们的解决方案使用模型驱动的方法进行服务建模,对终端QoS报告的小样本集(来自“更智能”的终端用户设备)进行数据挖掘技术,以及来自探测器的网络级关键性能指标(n - kpi)来解决这个问题。使用建模引擎和专用语言的服务建模技术隐藏了SLA状态监视的复杂性。数据挖掘技术利用自己的引擎和学习到的数据模型,基于n - kpi估计QoS值,并将估计值提供给建模引擎计算sla。文中介绍了我们的解决方案、样机和实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards adopting a tooldriven, integrated and automated change management process for virtual machine provisioning Effective VM sizing in virtualized data centers What will happen if cloud management operations burst out? A next generation entropy based framework for alert detection in system logs Contract Management for Cloud Services: Information modelling aspects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1