A Framework for Improving Data Quality in Data Warehouse: A Case Study

Taghrid Z. Ali, T. Abdelaziz, Abdelsalam M. Maatuk, Salwa M. Elakeili
{"title":"A Framework for Improving Data Quality in Data Warehouse: A Case Study","authors":"Taghrid Z. Ali, T. Abdelaziz, Abdelsalam M. Maatuk, Salwa M. Elakeili","doi":"10.1109/ACIT50332.2020.9300119","DOIUrl":null,"url":null,"abstract":"Nowadays, the development of data warehouses shows the importance of data quality in business success. Data warehouse projects fail for many reasons, one of which is the low quality of data. High-quality data achievement in data warehouses is a persistent challenge. Data cleaning aims at finding, correcting data errors and inconsistencies. This paper presents a general framework for the implementation of data cleaning according to the scientific principles followed in the data warehouse field, where the framework offers guidelines that define and facilitate the implementation of the data cleaning process to the enterprises interested in the data warehouse field. The research methodology used in this study is qualitative research, in which the data are collected through system analyst interviews. The study concluded that the low level of data quality is an obstacle to any progress in the implementation of modern technological projects, where data quality is a prerequisite for the success of its business, including the data warehouse.","PeriodicalId":193891,"journal":{"name":"2020 21st International Arab Conference on Information Technology (ACIT)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 21st International Arab Conference on Information Technology (ACIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIT50332.2020.9300119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Nowadays, the development of data warehouses shows the importance of data quality in business success. Data warehouse projects fail for many reasons, one of which is the low quality of data. High-quality data achievement in data warehouses is a persistent challenge. Data cleaning aims at finding, correcting data errors and inconsistencies. This paper presents a general framework for the implementation of data cleaning according to the scientific principles followed in the data warehouse field, where the framework offers guidelines that define and facilitate the implementation of the data cleaning process to the enterprises interested in the data warehouse field. The research methodology used in this study is qualitative research, in which the data are collected through system analyst interviews. The study concluded that the low level of data quality is an obstacle to any progress in the implementation of modern technological projects, where data quality is a prerequisite for the success of its business, including the data warehouse.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个提高数据仓库数据质量的框架:一个案例研究
如今,数据仓库的发展表明了数据质量对业务成功的重要性。数据仓库项目失败的原因有很多,其中之一就是数据质量低。在数据仓库中实现高质量的数据是一个持久的挑战。数据清理的目的是发现和纠正数据错误和不一致。本文根据数据仓库领域所遵循的科学原则,提出了一个实现数据清理的通用框架,该框架为对数据仓库领域感兴趣的企业提供了定义和促进数据清理过程实现的指导方针。本研究使用的研究方法是定性研究,其中通过系统分析师访谈收集数据。该研究的结论是,低水平的数据质量阻碍了现代技术项目的实施,在这些项目中,数据质量是其业务(包括数据仓库)成功的先决条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wireless Sensor Network MAC Energy - efficiency Protocols: A Survey Keystroke Identifier Using Fuzzy Logic to Increase Password Security A seq2seq Neural Network based Conversational Agent for Gulf Arabic Dialect Machine Learning and Soft Robotics Studying and Analyzing the Fog-based Internet of Robotic Things
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1