A meta-controller method for improving run-time self-architecting in SOA systems

J. M. Ewing, D. Menascé
{"title":"A meta-controller method for improving run-time self-architecting in SOA systems","authors":"J. M. Ewing, D. Menascé","doi":"10.1145/2568088.2568098","DOIUrl":null,"url":null,"abstract":"This paper builds on SASSY, a system for automatically generating SOA software architectures that optimize a given utility function of multiple QoS metrics. In SASSY, SOA software systems are automatically re-architected when services fail or degrade. Optimizing both architecture and service provider selection presents a pair of nested NP-hard problems. Here we adapt hill-climbing, beam search, simulated annealing, and evolutionary programming to both architecture optimization and service provider selection. Each of these techniques has several parameters that influence their efficiency. We introduce in this paper a meta-controller that automates the run-time selection of heuristic search techniques and their parameters. We examine two different meta-controller implementations that each use online learning. The first implementation identifies the best heuristic search combination from various prepared combinations. The second implementation analyzes the current self-architecting problem (e.g. changes in performance metrics, service degradations/failures) and looks for similar, previously encountered re-architecting problems to find an effective heuristic search combination for the current problem. A large set of experiments demonstrates the effectiveness of the first meta-controller implementation and indicates opportunities for improving the second meta-controller implementation.","PeriodicalId":243233,"journal":{"name":"Proceedings of the 5th ACM/SPEC international conference on Performance engineering","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th ACM/SPEC international conference on Performance engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2568088.2568098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

This paper builds on SASSY, a system for automatically generating SOA software architectures that optimize a given utility function of multiple QoS metrics. In SASSY, SOA software systems are automatically re-architected when services fail or degrade. Optimizing both architecture and service provider selection presents a pair of nested NP-hard problems. Here we adapt hill-climbing, beam search, simulated annealing, and evolutionary programming to both architecture optimization and service provider selection. Each of these techniques has several parameters that influence their efficiency. We introduce in this paper a meta-controller that automates the run-time selection of heuristic search techniques and their parameters. We examine two different meta-controller implementations that each use online learning. The first implementation identifies the best heuristic search combination from various prepared combinations. The second implementation analyzes the current self-architecting problem (e.g. changes in performance metrics, service degradations/failures) and looks for similar, previously encountered re-architecting problems to find an effective heuristic search combination for the current problem. A large set of experiments demonstrates the effectiveness of the first meta-controller implementation and indicates opportunities for improving the second meta-controller implementation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于改进SOA系统中运行时自架构的元控制器方法
本文建立在SASSY的基础上,SASSY是一个自动生成SOA软件架构的系统,可以优化多个QoS指标的给定效用函数。在SASSY中,当服务失败或降级时,SOA软件系统会自动重新架构。优化体系结构和服务提供商的选择提出了一对嵌套的np困难问题。在这里,我们将爬坡、波束搜索、模拟退火和进化规划应用于架构优化和服务提供商选择。每种技术都有几个影响其效率的参数。本文介绍了一种元控制器,它可以自动地在运行时选择启发式搜索技术及其参数。我们研究了两种不同的元控制器实现,它们都使用在线学习。第一个实现从各种准备好的组合中确定最佳启发式搜索组合。第二个实现分析当前的自架构问题(例如,性能指标的变化、服务降级/故障),并寻找类似的、以前遇到的重新架构问题,为当前问题找到一个有效的启发式搜索组合。大量的实验证明了第一种元控制器实现的有效性,并指出了改进第二种元控制器实现的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The taming of the shrew: increasing performance by automatic parameter tuning for java garbage collectors Uncertainties in the modeling of self-adaptive systems: a taxonomy and an example of availability evaluation Scalable hybrid stream and hadoop network analysis system Efficient optimization of software performance models via parameter-space pruning Real-time multi-cloud management needs application awareness
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1