A recursive estimation of network state for improving probabilistic caching

Munehiro Namba
{"title":"A recursive estimation of network state for improving probabilistic caching","authors":"Munehiro Namba","doi":"10.1109/SOCPAR.2015.7492819","DOIUrl":null,"url":null,"abstract":"There is a trend to introduce content caches as an inherent capacity of network device, such as routers, for improving the efficiency of content distribution and reducing network traffic. In this paper, we discuss the network state estimation in probabilistic caching based on a study with Bayesian inference, and propose a recursive estimation method for potentially improving the performance of adaptation to time-varying network state.","PeriodicalId":409493,"journal":{"name":"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)","volume":"249 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCPAR.2015.7492819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

There is a trend to introduce content caches as an inherent capacity of network device, such as routers, for improving the efficiency of content distribution and reducing network traffic. In this paper, we discuss the network state estimation in probabilistic caching based on a study with Bayesian inference, and propose a recursive estimation method for potentially improving the performance of adaptation to time-varying network state.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种改进概率缓存的网络状态递归估计
有一种趋势是将内容缓存作为网络设备(如路由器)的固有容量引入,以提高内容分发的效率并减少网络流量。本文在贝叶斯推理的基础上,讨论了概率缓存中的网络状态估计问题,提出了一种递归估计方法,有望提高网络对时变状态的自适应性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An effective AIS-based model for frequency assignment in mobile communication An innovative approach for feature selection based on chicken swarm optimization Vertical collaborative clustering using generative topographic maps Solving the obstacle neutralization problem using swarm intelligence algorithms Optimal partial filters of EEG signals for shared control of vehicle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1