An Efficient SRAM yield Analysis Using Scaled-Sigma Adaptive Importance Sampling

L. Pang, Mengyun Yao, Yifan Chai
{"title":"An Efficient SRAM yield Analysis Using Scaled-Sigma Adaptive Importance Sampling","authors":"L. Pang, Mengyun Yao, Yifan Chai","doi":"10.23919/DATE48585.2020.9116233","DOIUrl":null,"url":null,"abstract":"Statistical SRAM yield analysis has become a growing concern for the requirement of high integration density and reliability of SRAM under process variations. It is a challenge to estimate the SRAM failure probability efficiently and accurately because the circuit failure is a \"rare-event\". Existing methods are still not efficient enough to solve the problem, especially in high dimensions. In this paper, we develop a scaled-sigma adaptive importance sampling (SSAIS) which is an extension of the adaptive importance sampling. This method changes not only the location parameters but the shape parameters by searching the failure region iteratively. The 40nm SRAM cell experiment validated that our method outperforms Monte Carlo method by 1500x and is 2.3x~5.2x faster than the state-of-art methods with reasonable accuracy. Another experiment on sense amplifier shows our method achieves 1811x speedup over the Monte Carlo method and 2x~11x speedup over the other methods.","PeriodicalId":289525,"journal":{"name":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE48585.2020.9116233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Statistical SRAM yield analysis has become a growing concern for the requirement of high integration density and reliability of SRAM under process variations. It is a challenge to estimate the SRAM failure probability efficiently and accurately because the circuit failure is a "rare-event". Existing methods are still not efficient enough to solve the problem, especially in high dimensions. In this paper, we develop a scaled-sigma adaptive importance sampling (SSAIS) which is an extension of the adaptive importance sampling. This method changes not only the location parameters but the shape parameters by searching the failure region iteratively. The 40nm SRAM cell experiment validated that our method outperforms Monte Carlo method by 1500x and is 2.3x~5.2x faster than the state-of-art methods with reasonable accuracy. Another experiment on sense amplifier shows our method achieves 1811x speedup over the Monte Carlo method and 2x~11x speedup over the other methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于尺度sigma自适应重要性抽样的SRAM成品率分析
由于对SRAM在工艺变化下的高集成度和可靠性的要求,SRAM的良率统计分析日益受到关注。由于电路故障是一种“罕见事件”,如何有效准确地估计SRAM的故障概率是一个挑战。现有的方法仍然不足以有效地解决问题,特别是在高维情况下。本文提出了一种尺度sigma自适应重要性抽样(SSAIS),它是自适应重要性抽样的扩展。该方法通过对失效区域的迭代搜索,不仅改变了位置参数,而且改变了形状参数。40nm SRAM电池实验验证了我们的方法比蒙特卡罗方法快1500倍,在合理的精度下比目前的方法快2.3 ~5.2倍。在传感放大器上进行的实验表明,该方法比蒙特卡罗方法提高了1811倍,比其他方法提高了2 ~11倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In-Memory Resistive RAM Implementation of Binarized Neural Networks for Medical Applications Towards Formal Verification of Optimized and Industrial Multipliers A 100KHz-1GHz Termination-dependent Human Body Communication Channel Measurement using Miniaturized Wearable Devices Computational SRAM Design Automation using Pushed-Rule Bitcells for Energy-Efficient Vector Processing PIM-Aligner: A Processing-in-MRAM Platform for Biological Sequence Alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1