Independent Component Analysis in Breast Tissues Mammograms Images Classification Using LDA and SVM

D. D. Costa, LucioFlavio Campost, Allan Kardec Barros, A. Silva
{"title":"Independent Component Analysis in Breast Tissues Mammograms Images Classification Using LDA and SVM","authors":"D. D. Costa, LucioFlavio Campost, Allan Kardec Barros, A. Silva","doi":"10.1109/ITAB.2007.4407389","DOIUrl":null,"url":null,"abstract":"Female breast cancer is the major cause of death in western countries. Efforts in computer vision have been made in order to help improving the diagnostic accuracy by radiologists. In this paper, we present a methodology that uses Independent Component Analysis (ICA) along with Support Vector Machine (SVM) and Linear Discriminant Analysis (LDA) to distinguish between Mass or Non-Mass and Benign or Malign tissues from mammograms. As a result, we found the following: LDA reaches 89,5% of accuracy to discriminante Mass or Non-Mass and 95,2% to discriminate Benign or Malignant in DDSM database and in MIAS database we obtained 85 % to discriminate Mass or Non-Mass and 88% of to discriminate Benign or Malignant; SVM reaches 99,6% of accuracy to discriminate Mass or Non-Mass and 99,5% to discriminate Benign or Malignat in DDSM database and in MIAS database we obtained 97% to discriminate Mass or Non-Mass and 100% to discriminate Benign or Malignant.","PeriodicalId":129874,"journal":{"name":"2007 6th International Special Topic Conference on Information Technology Applications in Biomedicine","volume":"200 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 6th International Special Topic Conference on Information Technology Applications in Biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITAB.2007.4407389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Female breast cancer is the major cause of death in western countries. Efforts in computer vision have been made in order to help improving the diagnostic accuracy by radiologists. In this paper, we present a methodology that uses Independent Component Analysis (ICA) along with Support Vector Machine (SVM) and Linear Discriminant Analysis (LDA) to distinguish between Mass or Non-Mass and Benign or Malign tissues from mammograms. As a result, we found the following: LDA reaches 89,5% of accuracy to discriminante Mass or Non-Mass and 95,2% to discriminate Benign or Malignant in DDSM database and in MIAS database we obtained 85 % to discriminate Mass or Non-Mass and 88% of to discriminate Benign or Malignant; SVM reaches 99,6% of accuracy to discriminate Mass or Non-Mass and 99,5% to discriminate Benign or Malignat in DDSM database and in MIAS database we obtained 97% to discriminate Mass or Non-Mass and 100% to discriminate Benign or Malignant.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LDA和SVM在乳腺组织x光图像分类中的独立分量分析
女性乳腺癌是西方国家死亡的主要原因。为了帮助提高放射科医生的诊断准确性,人们在计算机视觉方面做出了努力。在本文中,我们提出了一种使用独立成分分析(ICA)以及支持向量机(SVM)和线性判别分析(LDA)的方法来区分乳房x光片中的肿块或非肿块以及良性或恶性组织。结果表明:在DDSM数据库中,LDA区分肿块和非肿块的准确率为89.5%,区分良恶性的准确率为95.2%;在MIAS数据库中,LDA区分肿块和非肿块的准确率为85%,区分良恶性的准确率为88%;在DDSM数据库中,SVM区分Mass和Non-Mass的准确率为99.6%,区分Benign和Malignant的准确率为99.5%,在MIAS数据库中,我们区分Mass和Non-Mass的准确率为97%,区分Benign和Malignant的准确率为100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wearable transducer to monitor respiration in a wireless way The relationship between HRV parameters and stressful driving situation in the real road Enforcing Privacy through Security in Remote Patient Monitoring Ecosystems Innovative Biomedical Information Technologies for Low-cost Healthcare Reflections on Information Technology in Biomedicine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1