Graphical modeling and decoding of human actions

W. Li, Zhengyou Zhang, Zicheng Liu
{"title":"Graphical modeling and decoding of human actions","authors":"W. Li, Zhengyou Zhang, Zicheng Liu","doi":"10.1109/MMSP.2008.4665070","DOIUrl":null,"url":null,"abstract":"This paper presents a graphical model for learning and recognizing human actions. Specifically, we propose to encode actions in a weighted directed graph, referred to as action graph, where nodes of the graph represent salient postures that are used to characterize the actions and shared by all actions. The weight between two nodes measures the transitional probability between the two postures. An action is encoded as one or multiple paths in the action graph. The salient postures are modeled using Gaussian mixture models (GMM). Both the salient postures and action graph are automatically learned from training samples through unsupervised clustering and expectation and maximization (EM) algorithm. Experimental results have verified the performance of the proposed model, its tolerance to noise and viewpoints and its robustness across different subjects and datasets.","PeriodicalId":402287,"journal":{"name":"2008 IEEE 10th Workshop on Multimedia Signal Processing","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE 10th Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2008.4665070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper presents a graphical model for learning and recognizing human actions. Specifically, we propose to encode actions in a weighted directed graph, referred to as action graph, where nodes of the graph represent salient postures that are used to characterize the actions and shared by all actions. The weight between two nodes measures the transitional probability between the two postures. An action is encoded as one or multiple paths in the action graph. The salient postures are modeled using Gaussian mixture models (GMM). Both the salient postures and action graph are automatically learned from training samples through unsupervised clustering and expectation and maximization (EM) algorithm. Experimental results have verified the performance of the proposed model, its tolerance to noise and viewpoints and its robustness across different subjects and datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人类行为的图形化建模和解码
本文提出了一个学习和识别人类行为的图形模型。具体来说,我们建议在加权有向图中编码动作,称为动作图,其中图的节点表示用于表征动作并由所有动作共享的显著姿势。两个节点之间的权重衡量了两个姿势之间的过渡概率。动作在动作图中被编码为一条或多条路径。突出姿态采用高斯混合模型(GMM)建模。通过无监督聚类和期望最大化(EM)算法从训练样本中自动学习显著姿态和动作图。实验结果验证了该模型的性能、对噪声和视点的容忍度以及对不同主题和数据集的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting doubly compressed JPEG images by using Mode Based First Digit Features Music tracking in audio streams from movies 3-D mesh representation and retrieval using Isomap manifold Adaptive wavelet coding of the depth map for stereoscopic view synthesis Fast encoding algorithms for video coding with adaptive interpolation filters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1