Data Warehouse-Based Ad Archive for Media Analysis

G. Indra, B. P. Kumar, G. H. Kumar, Mr. B. Srikanth
{"title":"Data Warehouse-Based Ad Archive for Media Analysis","authors":"G. Indra, B. P. Kumar, G. H. Kumar, Mr. B. Srikanth","doi":"10.1109/ICECAA58104.2023.10212301","DOIUrl":null,"url":null,"abstract":"Media influence's public opinion and decision-making today. Advertisements especially affect audience perceptions, actions, and purchases. A comprehensive data library on commercials and their performance is needed to understand how media affects society. Ad content, placement, and performance are stored in a data warehouse-based ad archive. The archive can evaluate marketing campaigns and discover media trends. Ad servers, social media platforms, and media monitoring tools may build the data warehouse-based ad archive. A dimensional data model helps retrieve and analyze data. Structured Query Language (SQL) queries, Online Analytical Processing (OLAP) cubes, and data visualization tools may access the archive. Media academics, marketers, and politicians may study the media environment using the data warehouse-based ad archive. Media academics may utilize the collection to study the marketing campaigns, media trends and media's influence on society. The archive may help advertisers analyze their ad campaigns, optimize media placement, and understand their target demographic. Policymakers may use the archive to monitor media outlets' advertising compliance and assess policy changes' media landscape effects.","PeriodicalId":114624,"journal":{"name":"2023 2nd International Conference on Edge Computing and Applications (ICECAA)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 2nd International Conference on Edge Computing and Applications (ICECAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECAA58104.2023.10212301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Media influence's public opinion and decision-making today. Advertisements especially affect audience perceptions, actions, and purchases. A comprehensive data library on commercials and their performance is needed to understand how media affects society. Ad content, placement, and performance are stored in a data warehouse-based ad archive. The archive can evaluate marketing campaigns and discover media trends. Ad servers, social media platforms, and media monitoring tools may build the data warehouse-based ad archive. A dimensional data model helps retrieve and analyze data. Structured Query Language (SQL) queries, Online Analytical Processing (OLAP) cubes, and data visualization tools may access the archive. Media academics, marketers, and politicians may study the media environment using the data warehouse-based ad archive. Media academics may utilize the collection to study the marketing campaigns, media trends and media's influence on society. The archive may help advertisers analyze their ad campaigns, optimize media placement, and understand their target demographic. Policymakers may use the archive to monitor media outlets' advertising compliance and assess policy changes' media landscape effects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于数据仓库的媒体分析广告归档
今天,媒体影响着公众舆论和决策。广告尤其会影响观众的认知、行为和购买。要了解媒体如何影响社会,就需要一个关于广告及其表现的综合数据库。广告内容、位置和效果存储在基于数据仓库的广告存档中。该档案可以评估营销活动并发现媒体趋势。广告服务器、社交媒体平台和媒体监控工具可以构建基于数据仓库的广告存档。维度数据模型有助于检索和分析数据。结构化查询语言(SQL)查询、在线分析处理(OLAP)多维数据集和数据可视化工具都可以访问该存档。媒体学者、营销人员和政治家可以使用基于数据仓库的广告存档来研究媒体环境。媒体学者可以利用这些资料来研究营销活动、媒体趋势和媒体对社会的影响。这些档案可以帮助广告商分析他们的广告活动,优化媒体布局,并了解他们的目标人群。政策制定者可以使用档案来监控媒体机构的广告依从性,并评估政策变化对媒体景观的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Learning based Sentiment Analysis on Images A Comprehensive Analysis on Unconstraint Video Analysis Using Deep Learning Approaches An Intelligent Parking Lot Management System Based on Real-Time License Plate Recognition BLIP-NLP Model for Sentiment Analysis Botnet Attack Detection in IoT Networks using CNN and LSTM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1