Xia Li, P. Baltus, D. Milosevic, P. van Zeijl, A. V. van Roermund
{"title":"A 60 GHz ultra low-power wake-up radio","authors":"Xia Li, P. Baltus, D. Milosevic, P. van Zeijl, A. V. van Roermund","doi":"10.1109/RWS.2011.5725415","DOIUrl":null,"url":null,"abstract":"This work presents an ultra low-power duty-cycled wake-up radio system for high-data-rate, short-range millimeter-wave WPAN applications. The asynchronous duty-cycled wake-up power management method is proposed and optimized to reduce the average power consumption. As the design example, a 60 GHz radio system is discussed, which consists of a 4-path phase-array transceiver, a duty-cycled wake-up receiver and the digital control circuits. Theoretical analyses of the optimum duty-cycle factor towards minimum average power are shown accordingly. Simulation results are given and a 230 µW average power consumption is achieved for the entire radio, which leads to about 4000-hour operation time for a 1.5-V 1000-mAh re-chargeable battery.","PeriodicalId":250672,"journal":{"name":"2011 IEEE Radio and Wireless Symposium","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Radio and Wireless Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RWS.2011.5725415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
This work presents an ultra low-power duty-cycled wake-up radio system for high-data-rate, short-range millimeter-wave WPAN applications. The asynchronous duty-cycled wake-up power management method is proposed and optimized to reduce the average power consumption. As the design example, a 60 GHz radio system is discussed, which consists of a 4-path phase-array transceiver, a duty-cycled wake-up receiver and the digital control circuits. Theoretical analyses of the optimum duty-cycle factor towards minimum average power are shown accordingly. Simulation results are given and a 230 µW average power consumption is achieved for the entire radio, which leads to about 4000-hour operation time for a 1.5-V 1000-mAh re-chargeable battery.