Frequent pattern using Multiple Attribute Value for itemset generation

Zalizah Awang Long, A. Bakar, Abdul Razak Hamdan
{"title":"Frequent pattern using Multiple Attribute Value for itemset generation","authors":"Zalizah Awang Long, A. Bakar, Abdul Razak Hamdan","doi":"10.1109/DMO.2011.5976503","DOIUrl":null,"url":null,"abstract":"Data mining is the process of finding correlations or patterns among dozens of fields in large relational databases. While Association Rules Mining (ARM) algorithm especially the Apriori algorithm has been an active research work in recent years. Diverse improvement varies in term of producing more frequent items and also generating further k-length. The idea is to produce better pattern and more interesting rules. In this paper, we propose new approach for ARM based on Multiple Attribute Value within the non-binary search spaces. The proposed algorithm improves the existing frequent pattern mining by generating the most frequent values (item) within the attribute and generate candidate based on the frequent attribute value. The main idea of our work is to discover more meaningful frequent items and maximum k-length items. The experimental results show that our proposed MAV frequent pattern mining enhance the impact in generating more frequents items and maximum length","PeriodicalId":436393,"journal":{"name":"2011 3rd Conference on Data Mining and Optimization (DMO)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 3rd Conference on Data Mining and Optimization (DMO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DMO.2011.5976503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Data mining is the process of finding correlations or patterns among dozens of fields in large relational databases. While Association Rules Mining (ARM) algorithm especially the Apriori algorithm has been an active research work in recent years. Diverse improvement varies in term of producing more frequent items and also generating further k-length. The idea is to produce better pattern and more interesting rules. In this paper, we propose new approach for ARM based on Multiple Attribute Value within the non-binary search spaces. The proposed algorithm improves the existing frequent pattern mining by generating the most frequent values (item) within the attribute and generate candidate based on the frequent attribute value. The main idea of our work is to discover more meaningful frequent items and maximum k-length items. The experimental results show that our proposed MAV frequent pattern mining enhance the impact in generating more frequents items and maximum length
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用多属性值生成项目集的频繁模式
数据挖掘是在大型关系数据库中的数十个字段之间寻找相关性或模式的过程。而关联规则挖掘(ARM)算法特别是Apriori算法是近年来研究的热点。不同的改进在产生更频繁的物品和产生更多的k长度方面有所不同。其想法是产生更好的模式和更有趣的规则。本文提出了一种基于非二进制搜索空间中多属性值的ARM算法。该算法通过生成属性内最频繁的值(项)来改进现有的频繁模式挖掘,并基于频繁属性值生成候选模式。我们工作的主要思想是发现更多有意义的频繁项和最大k长度项。实验结果表明,我们提出的MAV频繁模式挖掘在生成更多的频率项和最大长度方面具有增强的效果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison of various Wiener model identification approach in modelling nonlinear process Data mining technique for expertise search in a special interest group knowledge portal A frequent keyword-set based algorithm for topic modeling and clustering of research papers Optimisation model of selective cutting for Timber Harvest Planning in Peninsular Malaysia Reducing network intrusion detection association rules using Chi-Squared pruning technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1