Exploring Mid-Market Strategies for Big Data Governance

Ken Knapton
{"title":"Exploring Mid-Market Strategies for Big Data Governance","authors":"Ken Knapton","doi":"10.21203/rs.3.rs-114534/v1","DOIUrl":null,"url":null,"abstract":"\n Many data scientists are struggling to adopt effective data governance practices as they transition from traditional data analysis to big data analytics. Data governance of big data requires new strategies to deal with the volume, variety, and velocity attributes of big data. The purpose of this qualitative multiple case study was to explore big data governance strategies employed by data scientists to provide a holistic perspective of those data for making decisions. The participants were 10 data scientists employed in multiple mid-market companies in the greater Salt Lake City, Utah area who have strategies to govern big data. This study’s data collection included semi-structured in-depth individual interviews (n = 10) and analysis of process documentation relating to big data governance in those organizations (n = 4). Through thematic analysis, 4 major themes emerged from the study: ensuring business centricity, striving for simplicity, establishing data source protocols, and designing for security. The strategies outlined in this study can lead to positive social change by proactively addressing the ethical use of personally identifiable information in big data. By implementing strategies relating to the segregation of duties, encryption of data, and personal information, data scientists can mitigate contemporary concerns relating to the use of private information in big data analytics.","PeriodicalId":373878,"journal":{"name":"Adv. Artif. Intell. Mach. Learn.","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adv. Artif. Intell. Mach. Learn.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-114534/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many data scientists are struggling to adopt effective data governance practices as they transition from traditional data analysis to big data analytics. Data governance of big data requires new strategies to deal with the volume, variety, and velocity attributes of big data. The purpose of this qualitative multiple case study was to explore big data governance strategies employed by data scientists to provide a holistic perspective of those data for making decisions. The participants were 10 data scientists employed in multiple mid-market companies in the greater Salt Lake City, Utah area who have strategies to govern big data. This study’s data collection included semi-structured in-depth individual interviews (n = 10) and analysis of process documentation relating to big data governance in those organizations (n = 4). Through thematic analysis, 4 major themes emerged from the study: ensuring business centricity, striving for simplicity, establishing data source protocols, and designing for security. The strategies outlined in this study can lead to positive social change by proactively addressing the ethical use of personally identifiable information in big data. By implementing strategies relating to the segregation of duties, encryption of data, and personal information, data scientists can mitigate contemporary concerns relating to the use of private information in big data analytics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索大数据治理的中端市场战略
在从传统数据分析向大数据分析过渡的过程中,许多数据科学家都在努力采用有效的数据治理实践。大数据的数据治理需要新的策略来处理大数据的数量、种类和速度属性。这个定性多案例研究的目的是探索数据科学家采用的大数据治理策略,为决策提供这些数据的整体视角。参与者是10名数据科学家,他们受雇于犹他州盐湖城大地区的多家中端市场公司,他们有管理大数据的策略。本研究的数据收集包括半结构化的深度个人访谈(n = 10)和对这些组织中与大数据治理相关的流程文档的分析(n = 4)。通过主题分析,研究中出现了4个主要主题:确保业务中心性、追求简单性、建立数据源协议和安全设计。本研究概述的策略可以通过主动解决大数据中个人身份信息的道德使用问题,带来积极的社会变革。通过实施与职责分离、数据加密和个人信息相关的策略,数据科学家可以减轻与大数据分析中使用私人信息相关的当代担忧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FishRecGAN: An End to End GAN Based Network for Fisheye Rectification and Calibration Should ChatGPT and Bard Share Revenue with Their Data Providers? A New Business Model for the AI Era Structural Vibration Signal Denoising Using Stacking Ensemble of Hybrid CNN-RNN A Comparison of Methods for Neural Network Aggregation One-class Damage Detector Using Deeper Fully Convolutional Data Descriptions for Civil Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1