A Query-Based Summarization Service from Multiple News Sources

Elaheh Shafieibavani, M. Ebrahimi, R. Wong, Fang Chen
{"title":"A Query-Based Summarization Service from Multiple News Sources","authors":"Elaheh Shafieibavani, M. Ebrahimi, R. Wong, Fang Chen","doi":"10.1109/SCC.2016.13","DOIUrl":null,"url":null,"abstract":"It can be time consuming to search Internet news, due to multiple sources reporting repetitive information. Given a query and a set of relevant text articles, query-focused multi-document summarization (QMDS) aims to generate a fluent, well-organized, and compact summary that answers the query. While QMDS helps to summarize search results, most top-performing systems for this purpose remain largely extractive. Extractive summarization extracts a group of sentences and concatenates them. In this paper, we propose a summarization service based on abstractive QMDS using multi-sentence compression (MSC). Our proposed service generates a novel summary representing the gist of the content of the source document(s). Experiments using popular summarization benchmark datasets demonstrate the effectiveness of the proposed service.","PeriodicalId":115693,"journal":{"name":"2016 IEEE International Conference on Services Computing (SCC)","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Services Computing (SCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCC.2016.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

It can be time consuming to search Internet news, due to multiple sources reporting repetitive information. Given a query and a set of relevant text articles, query-focused multi-document summarization (QMDS) aims to generate a fluent, well-organized, and compact summary that answers the query. While QMDS helps to summarize search results, most top-performing systems for this purpose remain largely extractive. Extractive summarization extracts a group of sentences and concatenates them. In this paper, we propose a summarization service based on abstractive QMDS using multi-sentence compression (MSC). Our proposed service generates a novel summary representing the gist of the content of the source document(s). Experiments using popular summarization benchmark datasets demonstrate the effectiveness of the proposed service.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于查询的多新闻源摘要服务
搜索互联网新闻可能会耗费大量时间,因为有多个来源报道重复的信息。给定一个查询和一组相关的文本文章,以查询为中心的多文档摘要(QMDS)旨在生成回答查询的流畅、组织良好和简洁的摘要。虽然QMDS有助于总结搜索结果,但大多数用于此目的的高性能系统在很大程度上仍然是提取的。摘要提取是将一组句子提取出来并将它们连接起来。本文提出了一种基于多句压缩(MSC)的抽象QMDS摘要服务。我们建议的服务生成一个新颖的摘要,表示源文档内容的要点。使用流行的摘要基准数据集进行的实验证明了所提出服务的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementing the Required Degree of Multitenancy Isolation: A Case Study of Cloud-Hosted Bug Tracking System Complexity Reduction: Local Activity Ranking by Resource Entropy for QoS-Aware Cloud Scheduling An Elasticity-Aware Governance Platform for Cloud Service Delivery An Approach for Modeling and Ranking Node-Level Stragglers in Cloud Datacenters Dynamic Selection for Service Composition Based on Temporal and QoS Constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1