Liver Tumor Detection Via A Multi-Scale Intermediate Multi-Modal Fusion Network on MRI Images

Chao Pan, Peiyun Zhou, Jingru Tan, Bao-Ye Sun, Ruo-Yu Guan, Zhutao Wang, Ye Luo, Jianwei Lu
{"title":"Liver Tumor Detection Via A Multi-Scale Intermediate Multi-Modal Fusion Network on MRI Images","authors":"Chao Pan, Peiyun Zhou, Jingru Tan, Bao-Ye Sun, Ruo-Yu Guan, Zhutao Wang, Ye Luo, Jianwei Lu","doi":"10.1109/ICIP42928.2021.9506237","DOIUrl":null,"url":null,"abstract":"Automatic liver tumor detection can assist doctors to make effective treatments. However, how to utilize multi-modal images to improve detection performance is still challenging. Common solutions for using multi-modal images consist of early, inter-layer, and late fusion. They either do not fully consider the intermediate multi-modal feature interaction or have not put their focus on tumor detection. In this paper, we propose a novel multi-scale intermediate multi-modal fusion detection framework to achieve multi-modal liver tumor detection. Unlike early or late fusion, it maintains two branches of different modal information and introduces cross-modal feature interaction progressively, thus better leveraging the complementary information contained in multi-modalities. To further enhance the multi-modal context at all scales, we design a multi-modal enhanced feature pyramid. Extensive experiments on the collected liver tumor magnetic resonance imaging (MRI) dataset show that our framework outperforms other state-of-the-art detection approaches in the case of using multi-modal images.","PeriodicalId":314429,"journal":{"name":"2021 IEEE International Conference on Image Processing (ICIP)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP42928.2021.9506237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Automatic liver tumor detection can assist doctors to make effective treatments. However, how to utilize multi-modal images to improve detection performance is still challenging. Common solutions for using multi-modal images consist of early, inter-layer, and late fusion. They either do not fully consider the intermediate multi-modal feature interaction or have not put their focus on tumor detection. In this paper, we propose a novel multi-scale intermediate multi-modal fusion detection framework to achieve multi-modal liver tumor detection. Unlike early or late fusion, it maintains two branches of different modal information and introduces cross-modal feature interaction progressively, thus better leveraging the complementary information contained in multi-modalities. To further enhance the multi-modal context at all scales, we design a multi-modal enhanced feature pyramid. Extensive experiments on the collected liver tumor magnetic resonance imaging (MRI) dataset show that our framework outperforms other state-of-the-art detection approaches in the case of using multi-modal images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于MRI图像多尺度中间多模态融合网络的肝脏肿瘤检测
肝脏肿瘤自动检测,辅助医生进行有效治疗。然而,如何利用多模态图像来提高检测性能仍然是一个挑战。使用多模态图像的常用解决方案包括早期融合、层间融合和后期融合。他们要么没有充分考虑中间多模态特征的相互作用,要么没有把重点放在肿瘤检测上。本文提出一种新型的多尺度中间多模态融合检测框架,实现肝脏肿瘤的多模态检测。与早期或晚期融合不同,它保留了不同模态信息的两个分支,并逐步引入跨模态特征交互,从而更好地利用了多模态中包含的互补信息。为了进一步增强所有尺度上的多模态上下文,我们设计了一个多模态增强特征金字塔。在收集的肝肿瘤磁共振成像(MRI)数据集上进行的大量实验表明,在使用多模态图像的情况下,我们的框架优于其他最先进的检测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Color Mismatch Correction In Stereoscopic 3d Images Weakly-Supervised Multiple Object Tracking Via A Masked Center Point Warping Loss A Parameter Efficient Multi-Scale Capsule Network Few Shot Learning For Infra-Red Object Recognition Using Analytically Designed Low Level Filters For Data Representation An Enhanced Reference Structure For Reference Picture Resampling (RPR) In VVC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1