Silhouette Extraction with Random Pattern Backgrounds for the Volume Intersection Method

M. Toyoura, M. Iiyama, K. Kakusho, M. Minoh
{"title":"Silhouette Extraction with Random Pattern Backgrounds for the Volume Intersection Method","authors":"M. Toyoura, M. Iiyama, K. Kakusho, M. Minoh","doi":"10.1109/3DIM.2007.48","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel approach for extracting silhouettes by using a particular pattern that we call the random pattern. The volume intersection method reconstructs the shapes of 3D objects from their silhouettes obtained with multiple cameras. With the method, if some parts of the silhouettes are missed, the corresponding parts of the reconstructed shapes are also missed. When colors of the objects and the backgrounds are similar, many parts of the silhouettes are missed. We adopt random pattern backgrounds to extract correct silhouettes. The random pattern has many small regions with randomly-selected colors. By using the random pattern backgrounds, we can keep the rate of missing parts below a specified percentage, even for objects of unknown color. To refine the silhouettes, we detect and fill in the missing parts by integrating multiple images. From the images captured by multiple cameras used to observe the object, the object's colors can be estimated. The missing parts can be detected by comparing the object's color with its corresponding background's color. In our experiments, we confirmed that this method effectively extracts silhouettes and reconstructs 3D shapes.","PeriodicalId":442311,"journal":{"name":"Sixth International Conference on 3-D Digital Imaging and Modeling (3DIM 2007)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on 3-D Digital Imaging and Modeling (3DIM 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DIM.2007.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper, we present a novel approach for extracting silhouettes by using a particular pattern that we call the random pattern. The volume intersection method reconstructs the shapes of 3D objects from their silhouettes obtained with multiple cameras. With the method, if some parts of the silhouettes are missed, the corresponding parts of the reconstructed shapes are also missed. When colors of the objects and the backgrounds are similar, many parts of the silhouettes are missed. We adopt random pattern backgrounds to extract correct silhouettes. The random pattern has many small regions with randomly-selected colors. By using the random pattern backgrounds, we can keep the rate of missing parts below a specified percentage, even for objects of unknown color. To refine the silhouettes, we detect and fill in the missing parts by integrating multiple images. From the images captured by multiple cameras used to observe the object, the object's colors can be estimated. The missing parts can be detected by comparing the object's color with its corresponding background's color. In our experiments, we confirmed that this method effectively extracts silhouettes and reconstructs 3D shapes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于随机图案背景的体交法轮廓提取
在本文中,我们提出了一种新的方法来提取轮廓,通过使用一个特定的模式,我们称之为随机模式。体交法根据多台摄像机获取的物体轮廓重建三维物体的形状。使用该方法,如果轮廓的某些部分缺失,则重构形状的相应部分也会缺失。当物体的颜色和背景相似时,很多部分的轮廓会被忽略。我们采用随机的图案背景来提取正确的轮廓。随机图案有许多随机选择颜色的小区域。通过使用随机图案背景,我们可以将缺失部分的比率保持在指定的百分比以下,即使对于未知颜色的对象也是如此。为了完善轮廓,我们通过整合多幅图像来检测和填充缺失的部分。从用于观察该物体的多个摄像头拍摄的图像中,可以估计出该物体的颜色。可以通过比较物体的颜色与其相应的背景颜色来检测缺失的部分。在我们的实验中,我们证实了该方法可以有效地提取轮廓并重建三维形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D Challenges and a Non-In-Depth Overview of Recent Progress A Comparative Analysis of Depth-Discontinuity and Mixed-Pixel Detection Algorithms Image-based Model Completion Dense 3D Reconstruction method using Coplanarities and Metric Constraints for Line Laser Scanning Data-Driven Feature-Based 3D Face Synthesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1