Extracting Painted Pottery Pattern Information Based on Deep Learning

Jinye Peng, Kai Yu, Jun Wang, Qunxi Zhang, Cheng Liu, L. Wang
{"title":"Extracting Painted Pottery Pattern Information Based on Deep Learning","authors":"Jinye Peng, Kai Yu, Jun Wang, Qunxi Zhang, Cheng Liu, L. Wang","doi":"10.1109/IPTA.2018.8608139","DOIUrl":null,"url":null,"abstract":"This paper proposes a method that can effectively recover pattern information from painted pottery. The first step is to create an image of the pottery using hyperspectral imaging techniques. The Minimum Noise Fraction transform (MNF) is then used to reduce the dimensionality of the hyperspectral image to obtain the principal component image. Next, we propose a pattern extraction method based on deep learning, the topic of this paper, to further enhance the process resulting in more complete pattern information. Lastly, the pattern information image is fused with a true colour image using the improved sparse representation and detail injection fusion method to obtain an image that includes both the pattern and colour information of the painted pottery. The experimental results we observed confirm this process effectively extracts the pattern information from painted pottery.","PeriodicalId":272294,"journal":{"name":"2018 Eighth International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Eighth International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2018.8608139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a method that can effectively recover pattern information from painted pottery. The first step is to create an image of the pottery using hyperspectral imaging techniques. The Minimum Noise Fraction transform (MNF) is then used to reduce the dimensionality of the hyperspectral image to obtain the principal component image. Next, we propose a pattern extraction method based on deep learning, the topic of this paper, to further enhance the process resulting in more complete pattern information. Lastly, the pattern information image is fused with a true colour image using the improved sparse representation and detail injection fusion method to obtain an image that includes both the pattern and colour information of the painted pottery. The experimental results we observed confirm this process effectively extracts the pattern information from painted pottery.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的彩陶图案信息提取
本文提出了一种能有效恢复彩陶图案信息的方法。第一步是使用高光谱成像技术创建陶器的图像。然后利用最小噪声分数变换(MNF)对高光谱图像进行降维处理,得到主成分图像。接下来,我们提出了一种基于深度学习的模式提取方法,这是本文的主题,以进一步增强过程,从而获得更完整的模式信息。最后,采用改进的稀疏表示和细节注入融合方法将图案信息图像与真彩色图像融合,得到既包含彩陶图案信息又包含彩陶颜色信息的图像。实验结果表明,该方法能有效地提取彩陶的图案信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Driver Drowsiness Detection in Facial Images InNet: Learning to Detect Shadows with Injection Network Image Classification Method in DR Image Based on Transfer Learning Video Tracking of Insect Flight Path: Towards Behavioral Assessment Image Registration Algorithm Based on Super pixel Segmentation and SURF Feature Points
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1