Mining search topics from a code search engine usage log

S. Bajracharya, C. Lopes
{"title":"Mining search topics from a code search engine usage log","authors":"S. Bajracharya, C. Lopes","doi":"10.1109/MSR.2009.5069489","DOIUrl":null,"url":null,"abstract":"We present a topic modeling analysis of a year long usage log of Koders, one of the major commercial code search engines. This analysis contributes to the understanding of what users of code search engines are looking for. Observations on the prevalence of these topics among the users, and on how search and download activities vary across topics, leads to the conclusion that users who find code search engines usable are those who already know to a high level of specificity what to look for. This paper presents a general categorization of these topics that provides insights on the different ways code search engine users express their queries. The findings support the conclusion that existing code search engines provide only a subset of the various information needs of the users when compared to the categories of queries they look at.","PeriodicalId":413721,"journal":{"name":"2009 6th IEEE International Working Conference on Mining Software Repositories","volume":"206 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 6th IEEE International Working Conference on Mining Software Repositories","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSR.2009.5069489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

Abstract

We present a topic modeling analysis of a year long usage log of Koders, one of the major commercial code search engines. This analysis contributes to the understanding of what users of code search engines are looking for. Observations on the prevalence of these topics among the users, and on how search and download activities vary across topics, leads to the conclusion that users who find code search engines usable are those who already know to a high level of specificity what to look for. This paper presents a general categorization of these topics that provides insights on the different ways code search engine users express their queries. The findings support the conclusion that existing code search engines provide only a subset of the various information needs of the users when compared to the categories of queries they look at.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从代码搜索引擎使用日志中挖掘搜索主题
本文对主要商业代码搜索引擎之一Koders长达一年的使用日志进行了主题建模分析。这种分析有助于理解代码搜索引擎的用户在寻找什么。通过观察这些主题在用户中的流行程度,以及搜索和下载活动在不同主题之间的差异,可以得出这样的结论:发现代码搜索引擎可用的用户是那些已经高度明确地知道要查找什么的用户。本文提出了这些主题的一般分类,提供了对代码搜索引擎用户表达查询的不同方式的见解。这些发现支持了这样一个结论,即与用户查看的查询类别相比,现有的代码搜索引擎只提供了用户各种信息需求的一个子集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tracking concept drift of software projects using defect prediction quality Mining the history of synchronous changes to refine code ownership Learning from defect removals Assigning bug reports using a vocabulary-based expertise model of developers Using association rules to study the co-evolution of production & test code
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1