Hierarchical orthogonal matching pursuit for face recognition

Huaping Liu, F. Sun
{"title":"Hierarchical orthogonal matching pursuit for face recognition","authors":"Huaping Liu, F. Sun","doi":"10.1109/ACPR.2011.6166530","DOIUrl":null,"url":null,"abstract":"This paper tries to exploit the joint group intrinsics in face recognition problem by using sparse representation with multiple features. We claim that different feature vectors of one test face image share the same sparsity pattern at the higher group level, but not necessarily at the lower (inside the group) level. This means that they share the same active groups, but not necessarily the same active set. To this end, a hierarchical orthogonal matching pursuit algorithm is developed. The basic idea of this approach is straightforward: At each iteration step, we first select the best group which is shared by different features, then we select the best atoms (within this group) for each feature. This algorithm is very efficient and shows good performance in standard face recognition dataset.","PeriodicalId":287232,"journal":{"name":"The First Asian Conference on Pattern Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The First Asian Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2011.6166530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper tries to exploit the joint group intrinsics in face recognition problem by using sparse representation with multiple features. We claim that different feature vectors of one test face image share the same sparsity pattern at the higher group level, but not necessarily at the lower (inside the group) level. This means that they share the same active groups, but not necessarily the same active set. To this end, a hierarchical orthogonal matching pursuit algorithm is developed. The basic idea of this approach is straightforward: At each iteration step, we first select the best group which is shared by different features, then we select the best atoms (within this group) for each feature. This algorithm is very efficient and shows good performance in standard face recognition dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人脸识别的层次正交匹配追踪
本文试图利用多特征稀疏表示来开发人脸识别问题中的联合群特征。我们声称,一个测试人脸图像的不同特征向量在较高的组水平上共享相同的稀疏模式,但不一定在较低的(组内)水平上共享相同的稀疏模式。这意味着它们共享相同的活动组,但不一定是相同的活动集。为此,提出了一种分层正交匹配追踪算法。这种方法的基本思想很简单:在每个迭代步骤中,我们首先选择由不同特征共享的最佳组,然后为每个特征选择(在该组内的)最佳原子。该算法在标准人脸识别数据集上显示出良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geolocation based image annotation Discriminant appearance weighting for action recognition Tree crown detection in high resolution optical images during the early growth stages of Eucalyptus plantations in Brazil Designing and selecting features for MR image segmentation Adaptive Patch Alignment Based Local Binary Patterns for face recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1