S. Yu, Fucheng Yang, R. Han, H. Duan, Feifei Li, Peishun Liu
{"title":"Improved SEIR Model Based on Recovery Rate Optimization to Predict COVID-19","authors":"S. Yu, Fucheng Yang, R. Han, H. Duan, Feifei Li, Peishun Liu","doi":"10.1109/ACCC58361.2022.00012","DOIUrl":null,"url":null,"abstract":"When using the traditional SEIR infectious disease model to predict the trend of novel coronavirus pneumonia epidemic, numerous initial parameters need to be tuned, and the parameters cannot change over time during the prediction process, which reduces the accuracy of the model. Firstly, thesis used a logistic model to preprocess the SEIR model parameters and proposed a SEIR model based on time series recovery rate optimization with a new parameter of effective immunity rate. Secondly, the model was trained with epidemic data from domestic and foreign provinces and cities, and the usability of the model was demonstrated experimentally, and the mean absolute percentage error (MAPE) and goodness of fit (R2) were used to compare with other models, which proved the superiority of the model prediction and indicated further research directions.","PeriodicalId":285531,"journal":{"name":"2022 3rd Asia Conference on Computers and Communications (ACCC)","volume":"137 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 3rd Asia Conference on Computers and Communications (ACCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACCC58361.2022.00012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
When using the traditional SEIR infectious disease model to predict the trend of novel coronavirus pneumonia epidemic, numerous initial parameters need to be tuned, and the parameters cannot change over time during the prediction process, which reduces the accuracy of the model. Firstly, thesis used a logistic model to preprocess the SEIR model parameters and proposed a SEIR model based on time series recovery rate optimization with a new parameter of effective immunity rate. Secondly, the model was trained with epidemic data from domestic and foreign provinces and cities, and the usability of the model was demonstrated experimentally, and the mean absolute percentage error (MAPE) and goodness of fit (R2) were used to compare with other models, which proved the superiority of the model prediction and indicated further research directions.