Automatic web pages hierarchical classification using dynamic domain ontologies

A. M. Rinaldi
{"title":"Automatic web pages hierarchical classification using dynamic domain ontologies","authors":"A. M. Rinaldi","doi":"10.1504/IJKWI.2011.045162","DOIUrl":null,"url":null,"abstract":"The use of ontologies for knowledge representation has had a fast increase in the last years and they are used in several application context. One of these challenging applications is the web. Managing large amount of information on internet needs more efficient and effective methods and techniques for mining and representing information. In this article, we present a methodology for automatic topic annotation of web pages. We describe an algorithm for words disambiguation using an apposite metric for measuring the semantic relatedness and we show a technique which allows to detect the topic of the analysed document using ontologies extracted from a knowledge base. The strategy is implemented in a system where these information are used to build a topic hierarchy automatically created and not a priori defined for classifying web pages. Experimental results are presented and discussed in order to measure the effectiveness of our approach.","PeriodicalId":113936,"journal":{"name":"Int. J. Knowl. Web Intell.","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Knowl. Web Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJKWI.2011.045162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The use of ontologies for knowledge representation has had a fast increase in the last years and they are used in several application context. One of these challenging applications is the web. Managing large amount of information on internet needs more efficient and effective methods and techniques for mining and representing information. In this article, we present a methodology for automatic topic annotation of web pages. We describe an algorithm for words disambiguation using an apposite metric for measuring the semantic relatedness and we show a technique which allows to detect the topic of the analysed document using ontologies extracted from a knowledge base. The strategy is implemented in a system where these information are used to build a topic hierarchy automatically created and not a priori defined for classifying web pages. Experimental results are presented and discussed in order to measure the effectiveness of our approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用动态域本体的自动网页分层分类
在过去的几年中,本体对知识表示的使用有了快速的增长,它们被用于多种应用环境中。其中一个具有挑战性的应用就是网络。管理互联网上的海量信息,需要更高效的信息挖掘和表达方法和技术。本文提出了一种网页主题自动标注的方法。我们描述了一种使用适当度量来测量语义相关性的单词消歧算法,并展示了一种技术,该技术允许使用从知识库中提取的本体来检测分析文档的主题。该策略在一个系统中实现,其中这些信息用于构建自动创建的主题层次结构,而不是先验地定义用于分类网页的主题层次结构。为了衡量我们的方法的有效性,给出了实验结果并进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MOSSA: a morpho-semantic knowledge extraction system for Arabic information retrieval Learning by redesigning programs: support system for understanding design policy in software design patterns Representations of psychological function based on ontology for collaborative design of peer support services for diabetic patients Learning how to learn with knowledge building process through experiences in new employee training: a case study on learner-mentor interaction model SKACICM a method for development of knowledge management and innovation system e-KnowSphere
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1