Automatic latent value determination

Kai Cao, T. Chugh, Jiayu Zhou, Elham Tabassi, Anil K. Jain
{"title":"Automatic latent value determination","authors":"Kai Cao, T. Chugh, Jiayu Zhou, Elham Tabassi, Anil K. Jain","doi":"10.1109/ICB.2016.7550084","DOIUrl":null,"url":null,"abstract":"Latent fingerprints are the most frequently encountered and reliable crime scene evidence used in forensics investigations. Automatic methods for quantitative assessment of a latent in terms of (i) value for individualization (VID), (ii) value for exclusion only (VEO), and (iii) no value (NV), are needed to minimize the workload of latent examiners so that they can pay more attention to challenging prints (VID and NV latents). Current value determination is either made by examiners or predicted given manually annotated features. Because both of these approaches depend on human markup, they are subjective and time consuming. We propose a fully automatic method for latent value determination based on the number, reliability, and compactness of the minutiae, ridge quality, ridge flow, and the number of core and delta points. Given the small number of latents with VEO and NV labels in two latent databases available to us (NIST SD27 and WVU), only a two-class value determination is considered, namely VID and VID̅, where the VID̅ class contains VEO and NV latents. Experimental results show that the value determination by the proposed method (i) obviates the need for examiner markup while maintaining the accuracy of value determination and (ii) can predict the AFIS performance better than examiners.","PeriodicalId":308715,"journal":{"name":"2016 International Conference on Biometrics (ICB)","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB.2016.7550084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Latent fingerprints are the most frequently encountered and reliable crime scene evidence used in forensics investigations. Automatic methods for quantitative assessment of a latent in terms of (i) value for individualization (VID), (ii) value for exclusion only (VEO), and (iii) no value (NV), are needed to minimize the workload of latent examiners so that they can pay more attention to challenging prints (VID and NV latents). Current value determination is either made by examiners or predicted given manually annotated features. Because both of these approaches depend on human markup, they are subjective and time consuming. We propose a fully automatic method for latent value determination based on the number, reliability, and compactness of the minutiae, ridge quality, ridge flow, and the number of core and delta points. Given the small number of latents with VEO and NV labels in two latent databases available to us (NIST SD27 and WVU), only a two-class value determination is considered, namely VID and VID̅, where the VID̅ class contains VEO and NV latents. Experimental results show that the value determination by the proposed method (i) obviates the need for examiner markup while maintaining the accuracy of value determination and (ii) can predict the AFIS performance better than examiners.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自动潜值测定
潜在指纹是法医调查中最常见、最可靠的犯罪现场证据。需要在(i)个性化价值(VID), (ii)仅排除价值(VEO)和(iii)无价值(NV)方面对潜影进行定量评估的自动方法,以减少潜影审查员的工作量,以便他们可以更多地关注具有挑战性的印刷品(VID和NV潜影)。当前值的确定要么是由审查员做出的,要么是给出人工注释特征的预测。因为这两种方法都依赖于人工标记,所以它们是主观的且耗时的。我们提出了一种全自动的潜在价值确定方法,该方法基于细节的数量、可靠性和紧凑性、脊质量、脊流以及核心点和delta点的数量。鉴于潜在的少量VEO和NV标签在两个潜在的数据库提供给我们(NIST SD27和西弗吉尼亚大学),只有两舱确定被认为是价值,即VID和VID̅VID̅类包含VEO和NV潜伏。实验结果表明,该方法在保持值确定准确性的同时不需要审查员标记,并且可以比审查员更好地预测AFIS的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Latent fingerprint segmentation based on linear density Experimental results on multi-modal fusion of EEG-based personal verification algorithms Transferring deep representation for NIR-VIS heterogeneous face recognition TripleA: Accelerated accuracy-preserving alignment for iris-codes Reliable face anti-spoofing using multispectral SWIR imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1