Accelerated Simulation Method Involving Markovian and Self-Similar Traffic Sources with Non-Fifo Scheduler

J. Schormans
{"title":"Accelerated Simulation Method Involving Markovian and Self-Similar Traffic Sources with Non-Fifo Scheduler","authors":"J. Schormans","doi":"10.5013/ijssst.a.22.03.06","DOIUrl":null,"url":null,"abstract":"An efficient accelerated simulation method is essential to obtain fast and accurate results when dealing with self-similar and long range dependent (LRD) traffic sources. In this paper we describe an approach that involves short range dependent (SRD) and LRD traffic sources. The results show accuracy in the approach describe and the original packet-by-packet version. Also, the real time and number of events can be reduced using this method.","PeriodicalId":261136,"journal":{"name":"International journal of simulation: systems, science & technology","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of simulation: systems, science & technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5013/ijssst.a.22.03.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An efficient accelerated simulation method is essential to obtain fast and accurate results when dealing with self-similar and long range dependent (LRD) traffic sources. In this paper we describe an approach that involves short range dependent (SRD) and LRD traffic sources. The results show accuracy in the approach describe and the original packet-by-packet version. Also, the real time and number of events can be reduced using this method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非先进先出调度的马尔可夫自相似流量源加速仿真方法
在处理自相似和远程依赖(LRD)流量源时,需要一种高效的加速仿真方法来获得快速准确的仿真结果。在本文中,我们描述了一种涉及短距离依赖(SRD)和LRD流量源的方法。结果表明,该方法的描述和原始的逐包版本都是准确的。此外,使用该方法还可以减少事件的实时性和数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Loss Landscape Perspective and Simulations for Imaging Inverse Problems Based on AI and Neuron Network Training Method The Efficiency of Artificial Recurrent Neural Network (RNN) in Predicting Academic Performance for Students Enhancing Cloud Computing Efficiency: Fuzzy Based Task Classification for Better Resource Management Sentiment Clustering - A Hybrid Approach for Insider Threat Detection Developing a Tool for Modeling and Simulation of Discrete Systems Using Iterative Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1